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A�ne systems in L2(IR
d) II: dual systems

Amos Ron & Zuowei Shen

1. Introduction and review of previous work

1.1. General

We continue in this paper our investigation of systems of functions in L2(IR
d). Previous pa-

pers on the matter include [RS1] where the framework of our �berization techniques is established,

[RS2] where Weyl-Heisenberg systems are analyzed, [RS3] where the theory of a�ne frames, and

in particular tight a�ne frames, is developed, and [RS4] where that theory is invoked for the con-

struction of multivariate tight a�ne frames generated by compactly supported splines of arbitrary

smoothness. Other investigations and/or applications of these �berization techniques can be found

in [RS5-6] and [GR].

The present paper is devoted to a�ne systems, also known as wavelet systems. Our previous

studies of this setup ([RS3,4], [GR]) were focused on tight a�ne frames. The reason for that is

that the analysis in [RS3] led to simple `extension principles' for constructing tight a�ne frames,

and these simple principles led further to the constructions of a wealth of concrete tight wavelet

frames.

In this paper, we focus on the theory of general a�ne systems, quasi-a�ne systems, and their

dual counterparts. In what follows, we de�ne some of the basics concerning function systems in

L2 := L2(IR
d), and review the main ingredients of our �berization techniques. We then describe

some of the highlights of [RS3,4], and summarize the main �ndings of the present paper.

Let X be a countable subset of L2, referred to hereafter as a system. The system X can be used

either for the reconstruction or for the decomposition of other functions. The relevant operators in

this context are the synthesis operator T := TX de�ned by

T : `2(X)! L2 : c 7!
X
x2X

c(x)x;

and its adjoint, the analysis operator T � := T �X de�ned by

T � : L2 ! `2(X) : f 7! (hf; xi)x2X :

If either (hence both) the synthesis operator or the analysis operator is well-de�ned and bounded,

we say that X is a Bessel system. A Bessel system X whose analysis operator is bounded below is

called a fundamental frame; thus X is a fundamental frame if and only if there exist constants

c; C > 0 such that

ckfk2L2 �
X
x2X

jhf; xij2 � Ckfk2L2 ; all f 2 L2:
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The sharpest possible C (c, respectively) is called the upper (lower, respectively) frame bound.

Since almost all frames discussed in this paper are fundamental, we omit this adjective in any further

reference to a frame X, and add special remarks to results that apply also to the non-fundamental

case. Finally, a Bessel system X whose synthesis operator is bounded below is a Riesz basis.

If the analysis operator T � is unitary, then the identity TT � = I holds, and one can then

use the same system X in both the analysis and synthesis steps. In this case X is called a tight

frame. For a frame which is not tight, one needs to �nd another frame RX (with R : X ! L2 the

association between the elements of X and those of the new frame), called a dual frame of X,

such that TXT
�
RX = I, i.e., X

x2X

hf;Rxix = f; all f 2 L2:

By applying transposition to TXT
�
RX = I, one obtains that TRXT

�
X = I, hence duality is symmetric

here. There might be many dual frames for a given X; however, there exists a unique dual frame

RX for which the projector T �RXTX is self-adjoint, hence orthogonal; we refer hereafter to this

dual frame as the minimal dual frame. When T �RXTX = I, X is a fundamental Riesz basis. A

fundamental Riesz basis has a unique dual system RX which is characterized by the bi-orthogonality

relations

hx;Rx0i = �x;x0 :

As the following simple proposition reveals, there is a certain amount of redundancy in the

above de�nition of dual frames:

Proposition 1.1. Let X be a Bessel system, and R : X ! L2 some map. Assume that RX is a

Bessel system, too. Then the following conditions are equivalent:

(a) X is a frame and RX is a frame dual to X.

(b) TXT
�
RX = I:

Also, for the minimality of the dual frame, one really needs to prove the self-adjointness of R:

hRx; x0i = hx;Rx0i; all x; x0 2 X

(cf. Proposition 4.1 here).

1.2. An overview of the �berization techniques

A casual stride through some of the highlights of our previous papers, which is the goal here,

is possible only if one forsakes rigorousness. In particular, we intentionally ignore all questions

concerning functions that are only a.e. de�ned, operators that are only densely de�ned on their

domain, invertibility of operators, etc. This approach here is the antipode of the original approach

in our papers, where meticulous discussions of such �ne points are included.

Let E�, � 2 IRd, be the shift operator:

E� : f 7! f(�+ �);
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and let L be a d-lattice in IRd, i.e., the image of ZZd under some linear invertible map. Recall that

the dual lattice eL of L is the lattice de�ned by

eL := fk 2 IRd : hk; li 2 2�ZZ; all l 2 Lg:

For example, the dual lattice of hZZd is 2�ZZd=h.

Next, assume that the system X is shift-invariant (with respect to the given lattice L), i.e.,

there exists a subset F � X, such that

X = (E�f : f 2 F; � 2 L):

In [RS1], we associate the shift-invariant X with a collection of `�ber operators' as follows. The

�bers are indexed by ! 2 IRd, and each �ber J! := J!(X) is an operator from `2(F ) into `2(eL),
hence is a matrix whose rows are indexed by eL and whose columns are indexed by F . The (l; f) 2
eL� F entry of J! is

d(L) bf (! + l);

with d(L) is some normalization constant (actually, d(L) = (detL)�1=2). We refer to the collection

of (J!)! as the pre-Gramian �berization of X. In order to illustrate at this early point the role

played by the various Gramian matrices, we associate the �bers (J!)! with the norm functions

J : ! 7! kJ!k; J
� : ! 7! kJ�!k;

where kJ!k, kJ
�
!k are the operator norms of J!, J

�
!, and where J�! is the adjoint matrix of J!

(considered thus as an operator from `2(eL) into `2(F )). One has:
Result 1.2. ([RS1]) The following three conditions are equivalent:

(a) X is a Bessel system.

(b) J 2 L1(IRd).

(c) J � 2 L1(IRd).

Moreover, kTXk = kJ kL1(IRd) = kJ �kL1(IRd).

Example 1.3. Let X be a Principal Weyl-Heisenberg (PWH) system (see [RS2]). This, by

de�nition, means that for some � 2 L2, and two lattices K, L � IRd,

(1:4) X = fEk(e`�) : k 2 K; ` 2 Lg;

where e` 7! e�i`�t, the exponential with frequency `. We then observe that X is shift-invariant with

respect to

F := fe`� : ` 2 Lg:

Indexing F by L, we obtain that the matrix J!(X) is indexed by eK � L, with entries

d(K)b�(! + `+ k); (k; `) 2 eK � L:
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Now, consider another PWH system, viz.

X� := fE`(ek�) : k 2 eK; ` 2 eLg:
In [RS2], X� is named the adjoint system of X. A computation similar to the previous one

shows that J!(X
�) is indexed by L� eK with entries

d(eL)b�(! + `+ k); (`; k) 2 L� eK:
This means that

(1:5)
d(eL)
d(K)

J�!(X) = J!(X
�):

The connection expressed in (1.5) is the basis for the duality principle of Weyl-Heisenberg

systems, [RS2] (many ingredients of that principle were independently discovered, using di�erent

techniques, by Janssen in [J], and by Daubechies, Landau and Landau in [DLL]). That duality

principle (which is stated in Result 1.8) deals with the intimate relation that exists between a

PWH system and its adjoint PWH system.

Let us now return to general shift-invariant systems X, and assume that L := ZZd (the treat-

ment of general lattices is truly important only in the context of WH systems; in the wavelet case

there is no loss in choosing the lattice canonically as we just did). The pre-Gramian matrices can

be used to create self-adjoint non-negative �bers in two di�erent ways:

G! := J�!J!; eG! := J!J
�
!:

The collection (G!)! is the Gramian �berization of X while ( eG!)! is the dual Gramian

�berization of X. Note that the Gramian (dual Gramian, respectively) �bers are non-negative

self-adjoint endomorphisms of `2(F ) (`2(2�ZZ
d), respectively). It is the operator T �XTX which is

analysed via the the Gramian �bers, while the dual Gramian �bers are particularly useful in the

analysis of the other operator, TXT
�
X . A direct computation shows that

(1:6) G!(f; g) =
X

�22�ZZd

bf(! + �)bg(! + �); (f; g) 2 F � F:

The right hand side of (1.6) is the bracket product [ bf; bg] that was introduced (in a slightly

di�erent form) in [JM] and in the present form in [BDR1]. The dual Gramian �bers have the form

eG!(�; �) =
X
f2F

bf(! + �) bf(! + �); (�; �) 2 2�ZZd � 2�ZZd:

As we did in the pre-Gramian discussion, we associate the Gramian matrices with their norm

functions

G : IRd ! IR+ : ! 7! kG! k ,

G� : IRd ! IR+ : ! 7! k eG! k ,

G� : IRd ! IR+ : ! 7! kG�1
! k ,

G�� : IRd ! IR+ : ! 7! k eG�1
! k .

The question whetherX is a fundamental frame, a Riesz basis, a tight frame, or an orthonormal

system can be completely settled with the aid of the above norm functions:
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Result 1.7. [RS1] Let X be a shift-invariant system associated with the Gramian norm functions

as above. Then:

(a) X is a Riesz basis if and only if G, G� 2 L1. Further, kT k2 = kGkL1 and kT �1k2 = kG�kL1 .

In particular, X is orthonormal if and only if G! is the identity matrix for (almost) every !.

(b) X is a fundamental frame if and only if G�;G�� 2 L1. Further, kT �k2 = kG�kL1 and

kT ��1k2 = kG��kL1 . In particular, X is a fundamental tight frame if and only if eG! is the

identity matrix for (almost) every !.

This result was combined in [RS2] with (1.5) to yield the following:

Result 1.8. Let X be a PWH system whose generator has norm 1, X� its adjoint system.

(a) X� is a frame if and only if X is a frame.

(b) X� is a tight frame if and only if X is a tight frame.

(c) X� is a Riesz basis if and only if X is a fundamental frame.

(d) X� is an orthonormal basis if and only if X is a fundamental tight frame.

(e) `The dual of the adjoint is the adjoint of the dual': The generator of the minimal dual frame

of X� is the same as the generator of the minimal dual frame of X, up to a multiplicative

constant.

In addition to the Gramian matrices, it is also important to consider mixed Gramian matrices:

this is the case when we multiply the pre-Gramians of two di�erent shift-invariant systems (that

are indexed, say, by the same index set). Such matrices are important when studying dual systems,

and extensive discussions of that setup are provided in [RS1] for general SI systems, and in [RS2]

for the special WH system. The a�ne version of such matrices will be central to our investigations

in the present paper. But, �rst, let us introduce wavelets systems and their celebrated �berization.

1.3. Fiberization of a�ne systems

The systems studied in this paper are known as a�ne or wavelet. To de�ne an a�ne system,

let 	 � L2 be a �nite set of mother wavelets, and let D be a dilation operator:

D : f 7! jdet sj1=2f(s�):

Here, s is any �xed d � d expansive matrix, i.e., a matrix whose entire spectrum lies outside the

closed unit disk. The a�ne system generated by 	 is then the system

X := X(	) := [k2ZZD
kE(	);

where

E(	) := fE� :  2 	; � 2 ZZdg:

Throughout this article, we also assume that the matrix s has integer entries.

An a�ne system is invariant under the dilation operator D, but is not shift-invariant. At the

same time, our �berization techniques require X to be shift-invariant. We had circumvented this

di�culty in [RS3] with the aid of the notions of the truncated a�ne system X0 and the quasi-a�ne

system Xq of an a�ne system:
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De�nition: the truncated a�ne system. Let X be an a�ne system generated by 	. The

truncated system X0 of X is the shift-invariant system

X0 = [k�0D
kE(	):

Thus, the truncated a�ne system is obtained by removing all the negative dilation levels

DkE(	), k < 0, from X.

De�nition: the quasi-a�ne system. Let X be an a�ne system generated by 	. The quasi-

a�ne system Xq of X is the shift-invariant system

Xq = X0

[
([k<0jdet sj

k
2E(Dk	)):

Thus, the quasi-a�ne system is obtained from the a�ne system by modifying the system in the

negative dilation levels. For each k < 0, the set DkE(	) (which consists of the sparse s�kZZd-shifts

of Dk	), is replaced by the denser ZZd-shifts of the renormalized functions jdet sjk=2Dk	. Note

that the normalization factor jdet sjk=2 is < 1.

The main result of [RS3] is as follows.

Result 1.9. Let X be an a�ne system, and Xq its quasi-a�ne counterpart. Then:

(a) X is a Bessel system if and only if Xq is a Bessel system.

(b) X is a frame if and only if Xq is a frame. Moreover, the two frames have the same upper frame

bound and the same lower frame bound.

In particular, X is a tight frame if and only if Xq is a tight frame.

We remark that the original theorem in [RS3] assumes the following very mild smoothness

condition on 	:

(1:10)
X
 2	

1X
k=0

c( ; k) <1;

where for every k 2 ZZ+,

Ak := f� 2 2�ZZd : j�j > 2kg;

and

c( ; k) := k
X
�2Ak

j b (�+ �)j2kL1([��;�]d):

It is elementary to prove that (1.10) is satis�ed once b (!) = O(j!j��), as ! !1, for some � > d=2,

and every  2 	. This smoothness condition on 	 was removed in [CSS].
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Result 1.9 allows one to apply �berization techniques to a�ne systems: �rst, one analyses

quasi-a�ne systems (which are shift-invariant) using results like Result 1.7, and then transports

the `frame parts' of such results to a�ne systems using the above result. In order to obtain

concrete results along these lines, one needs �rst to represent the quasi-a�ne system Xq(	) as a

shift-invariant system E(F ), and then to compute the dual Gramian �bers. This technical step

was carried out in [RS3]. It turns out that the (�; �)-entry of the dual Gramian �ber is

eG!(�; �) =
X
 2	

1X
k=�(���)

b (s�k(! + �)) b (s�k(! + �));

where � is the s�-valuation function

�(!) := inffk 2 ZZ : s�k! 2 2�ZZdg:

Anticipating an extensive use of such expressions in wavelet analysis, we introduced in [RS3] the

following a�ne product:

	[!; !0] =
X
 2	

1X
k=�(!�!0)

b (s�k!) b (s�k!0):

Thus, in terms of the a�ne product, the dual Gramian entry is 	[!+�; !+ �]. It is worth noting

that the diagonal entries of that dual Gramian thus have the form

eG!(�; �) =
X
 2	

X
k2ZZ

j b (s�k(! + �))j2 = 	[! + �; ! + �] =: 	[! + �]:

In the sequel, we always refer to the above dual Gramian matrix as the `dual Gramian of the a�ne

X', though, strictly speaking, it is the dual Gramian of the quasi-a�ne Xq .

It is now easy to formulate results that analyse the a�ne X in terms of its dual Gramian

�bers. For example, a complete characterization of the frame property of the a�ne X in terms

of the above dual Gramian is obtained by combining part (b) of Result 1.7 together with Result

1.9. Of particular interest is the characterization of tight frames. One can write (in view of (b)

of Result 1.7) an immediate result that simply requires the diagonal entries of the dual Gramians

to be equal to 1 and requiring the o�-diagonal elements to be equal to 0. However, there is a

certain amount of redundancy in the so-obtained conditions. After removing those redundancies,

one obtains the following characterization of tight a�ne frames. We note that this result was

obtained independently by Bin Han in [H]:

Result 1.11. ([H], [RS3]) Let X be an a�ne system generated by 	. Then X is a tight frame if

and only if the following two conditions are valid for almost every ! 2 IRd:

(a) 	[!] = 1.

(b) 	[!; ! + �] = 0, for every � 2 2�(ZZdn(s�ZZd)):

Example. In one variable and for dyadic dilations, these two conditions boil down to the require-

ments that for almost every ! and for every odd integer j,

X
 2	

X
k2ZZ

j b (2k!)j2 = 1;
X
 2	

1X
k=0

b (2k!) b (2k(! + 2�j)) = 0:
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1.4. Fiberization of a�ne frames: MRA

The use of multiresolution analysis allows one to derive from the abstract results of the previous

subsection useful algorithms for constructing tight and other a�ne frames. In [RS3], it is assumed

that the MRA may be generated by a vector of scaling functions (i.e., it is an FSI MRA). However,

for all practical considerations that we discuss here, it su�ces to consider the PSI case, i.e., that

of a singleton scaling function.

Our notion of MRA is a very weak (hence general) one: we are given a scaling function � 2 L2,

and mean by that that � satis�es the relation

b�(s��) = ��b�;

with the 2�-periodic mask �� assumed to be bounded. We then select the mother wavelets 	 from

V1 (:= the s-dilate of V0, the latter being the smallest closed L2-space that contains the shifts of

�). Thus, each  satis�es a relation

b (s��) = � b�;
for some 2�-periodic wavelet mask � . Note that, importantly, no a-priory assumption on the

number of mother wavelets is made.

We can then substitute the above relations into the a�ne product expression, combine that

with Result 1.11, and obtain in this way a characterization of all tight a�ne frames that can be

constructed by MRA (cf. Theorem 6.5 of [RS3]). From that characterization, it is easy to conclude

the following unitary extension principle:

Result 1.12. Let � be a re�nable function with bounded mask ��, and assume that b�(0) = 1. Let

	 be a �nite collection of functions de�ned by

b (s��) = � b�;

with each � bounded and 2�-periodic. Then the a�ne system generated by 	 is a tight frame if the

following orthogonality conditions hold for almost every ! 2 IRd, and for every � 2 2�(s��1ZZd=ZZd):

��(!)��(! + �) +
X
 2	

� (!)� (! + �) = �0;�:

Example. We consider again the univariate dyadic case. In that event, 2�((ZZ=2)=ZZ) = f0; �g.

Let � be the vector whose �rst entry is �� and other entries � ,  2 	. There are then two

conditions here. The �rst is that �(!) has a unit length, and the other is that �(!) is orthogonal

to �(! + �).
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Concrete constructions that use this extension principle are given in [RS3], [RS4] and [GR].

In [RS3], we selected the re�nable function to be the univariate B-spline of order m, and found

m compactly supported mother wavelets (in V1, i.e., having the half integers as their knots) all

symmetric (or anti-symmetric) that generate a tight frame. In [RS4] various multivariate construc-

tions of compactly supported spline wavelets that are derived from a box spline are discussed (in

fact, it is shown there that, essentially, such a tight frame can be derived from any given re�nable

box spline). For example, we show there how to construct a tight frame using the Zwart-Powell

element (which is a C1 piecewise-quadratic and has four direction mesh lines of symmetry; the

wavelets have these four lines of symmetry/anti-symmetry, too). The constructions of [RS4] apply

to dilation matrices that satisfy sk = aI, for some integer k. For a general dilation matrix s, tight

compactly supported a�ne frames of arbitrarily high smoothness were constructed in [GR]. Those

frames are not piecewise-polynomial in general.

1.5. Layout of the current paper

We mentioned before that every frame can be complemented by a dual system (and that there

may be many such dual systems). However, structural properties of the original system X may not

be preserved in the dual system. In particular, it is well-known that an a�ne frame may not have

a dual system which is a�ne, too. On the other hand, a tight frame obviously have an a�ne dual

system (viz., the system itself). Thus, the a�ne frames that have an a�ne dual system can be

considered as an intermediate case between the special tight systems and the most general a�ne

frames. The focus in this paper is on such systems.

While extending the tight frame results of [RS3] to this more general setup, we had to deal

with several problems of di�erent nature:

(a): The systems that were analyzed in [RS1] were not only assumed to be shift-invariant, but,

also, the �berized operators were assumed to be self-adjoint (a condition that is certainly valid for

TXT
�
X and T �XTX); in fact, the main results of [RS1] fail to hold without this assumption. When

dealing with a system-dual system relation, the operators that are �berized are not self-adjoint.

However, it turned out that only a small, light, fraction of the general �berization results of [RS1]

is really needed here, and that portion of the �berization theory extends with ease to operators that

are not self-adjoint. In x2.1, we establish those minor extensions that are required in this paper.

The reader may skip this technical section without an essential loss of continuity. In the subsequent

section, x2.2, we introduce the mixed a�ne product and describe the dual Gramian �bers of the

mixed operators; these, too, can be considered as straightforward technical extensions of the [RS3]

analysis.

(b): As explained before, it is the quasi-a�ne system which is really �berized; conclusions

concerning the a�ne X then follow with the aid of Result 1.9. This result, however, lacks assertions

concerning possible connections between dual systems of a�ne frames and dual systems of their

quasi-a�ne counterparts. This study is the subject of x3.1. In this context, one should keep in

mind that `wished for' statements of the form \each dual system of a quasi-a�ne frame is the

quasi-a�ne counterpart of a system dual to the a�ne frame" simply do not make sense: as we

said, dual systems of a�ne frames need not to be a�ne. The results of x3.1, though, show that an

appropriately modi�ed version of the above statement is valid (cf. Theorem 3.1).
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(c): The foundation laid in x2.1 and x2.2, together with Proposition 1.1, allows us then, for

given a�ne Bessel systems X and RX, to study the question whether RX is a dual system to X

via the �berization of TXqT �(RX)q . This still requires one to check in advance that the systems in

question are Bessel. No new techniques for verifying this property are given in the current paper.

However, in addition to being characterized fully in [RS3] (cf. Theorem 5.5 there), simple su�cient

conditions for the Bessel property of an a�ne X are known (see e.g. [RS6]). Roughly speaking, all

these results say that a system X is Bessel if the corresponding mother wavelets are smooth (in a

mild sense) and have zero-mean values. With all these in hand, we analyze, in x3.2, a�ne systems

constructed by MRA. The analysis in this part extends the analysis of MRA constructions of tight

a�ne frames that was made in x6 of [RS3].

(d): Given two dual (a�ne) frames, we attempt in x4 to verify whether these systems are bi-

orthogonal Riesz bases. Dual Gramian techniques are applied in x4.1 to this end. These techniques

di�er from the Gramian approaches used in [RS6] and [RS3]. Finally, the study of bi-orthogonal

wavelet constructions from MRA is the topic of x4.2.

2. The mixed Gramian matrices

2.1. Two technical lemmata

The Gramian matrices of a given shift-invariant system X were obtained as the product of

the pre-Gramian matrix and its adjoint. For the intended simultaneous study of two systems, X

and RX, we need to multiply the pre-Gramian of one of these systems by the adjoint pre-Gramian

of the other system. We call the resulting matrices the mixed Gramian matrices. We will

then need some extensions of the results of [RS1] concerning the Gramian matrices to the new

mixed setup. Had we assumed that the mixed matrices are also non-negative and self-adjoint, a

complete generalization of the [RS1] results (hence of Result 1.7 in particular) would have been

possible; unfortunately, in the context of system-dual system setup, such an assumption holds only

for minimal dual systems, hence, in view of our stated objectives, is prohibitive.

In the absence of the self-adjointness assumption, we need to assume in advance that E(�) and

E(R�) are Bessel systems. Under this assumption, we prove in this section two simple lemmata

that will be required in the next subsection.

We denote by S the Fourier transform of the operator TE(R�)T
�
E(�) i.e.,

(2:1) Sf := (TE(R�)T
�
E(�)f

_)b;

where f_ is the inverse Fourier transform of f . The previously de�ned dual Gramian is now replaced

by the mixed dual Gramian of E(�) and E(R�) (still denoted by eG) which is a matrix whose

rows and columns are indexed by 2�ZZd, and whose (�; �)-entry is

eG!(�; �) =
X
�2�

cR�(! + �)b�(! + �):
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It is proved in [RS1], that, since E(�) and E(R�) are assumed Bessel, each of the above entries

is well-de�ned a.e., in the sense that the corresponding sum converges absolutely (and to a �nite

limit). The dual Gramian analysis in [RS1] is based on the observation that, for a.e. ! 2 IRd,

(2:2) (Sf)j
!+2�ZZd

= eG!(fj
!+2�ZZd

):

Lemma 2.3. Assume E(�) and E(R�) are Bessel systems. Then E(R�) is a system dual to E(�)

if and only if eG = I for almost every !.

Proof: E(R�) is dual to E(�) if and only if TE(R�)T
�
E(�) = I (cf. Proposition 1.1) if and

only if, with S as above, S = I. Now, if S = I, then Sf = f a.e., for every f 2 L2, which, due to

(2.2), readily implies that eG = I a.e. Conversely, if eG = I a.e., then, (2.2), (Sf)j
!+2�ZZd

= (fj
!+2�ZZd

)

a.e., for every f , and hence S = I.

The other result that we need is also very simple. The subspace Hr, r � 0, that appears in

the following lemma is de�ned as:

Hr := ff 2 L2 : bf(!) = 0; for j!j � rg:

Lemma 2.4. Assume that E(�) and E(R�) are Bessel. Let eG be their mixed dual Gramian.

Assume further that, for some r � 0, the restriction of TE(R�)T
�
E(�) � I to Hr has norm � ", for

some " > 0. Then, for a.e. ! 2 IRd, and for all � 2 2�ZZd, if j!j > r,

j eG!(�; 0) � ��j � ":

Proof: Fix � 2 2�ZZd. Consider the map

M : 
 :! C : ! 7! eG!(�; 0) � ��;

with 
 the complement in IRd of a ball centered at the origin, with radius r. Since we assume E(�)

and E(R�) to be Bessel, then, [RS1], ! 7! eG!(�; 0) is well-de�ned in the sense that the corre-

sponding sum converges absolutely a.e. and therefore M is measurable (as the sum of measurable

functions). Let

A := f! 2 
 : jM(!)j > "g:

Then A is measurable. Assume that, for some � 2 2�ZZd, the intersection A� := A\ (�+ [��; �]d)

has positive measure, and let f be the support function of A� . Then, with S as in (2.1), and for

every ! 2 A� , ((S � I)f)j
!+2�ZZd

is the vector  7! eG!(; 0)� � , and hence,

k((S � I)f)j
!+2�ZZd

k`2(2�ZZd) � j eG!(�; 0) � ��j > " = "f(!):

Squaring the last inequality and integrating it over A� we easily obtain (after taking into account

that (S � I)f is supported only in A� + 2�ZZd) that

k(S � I)fk > "kfk:

However, since f_ 2 Hr, this contradicts the fact that, by assumption, k(S�I)gk � "kgk, for every

g 2 cHr. Hence A� is a null-set, and consequently A is a null-set, too, which is what we wanted to

prove.

11



We note that the above argument applies to any translation-invariant subspace of L2 (one only

needs to replace the above set 
 by the spectrum of that space).

2.2. Fiberization of quasi-a�ne systems

Let X be an a�ne system generated by 	, let R : 	 ! L2 be some map, and let RX be the

a�ne system generated by R	. We assume that X and RX are Bessel, and conclude (from Result

1.9) that the quasi-a�ne counterparts Xq and (RX)q are Bessel, too. This ensures us that the

mixed Gramian matrices ofXq and (RX)q are well-de�ned (as discussed in the previous subsection).

The details of these matrices are provided below, but we omit here the actual computations of these

mixed dual Gramian �bers: the derivation follow verbatim that of [RS3] (where the case RX = X

is studied).

First, we introduce the mixed a�ne product: given any �nite 	, and R : 	 ! L2, the

mixed a�ne product

	R[ ; ]

is a map from IRd � IRd to C de�ned as

(2:5) 	R[ ; ] : (!; !
0) 7! 	R[!; !

0] :=
X
 2	

1X
k=�(!�!0)

b (s�k!)cR (s�k!0); !; !0 2 IRd:

Here, the �-function is de�ned as before:

(2:6) � : IRd ! ZZ : ! 7! inffk 2 ZZ : s�k! 2 2�ZZdg:

One easily observes that 	R[ ; ] is s
�-invariant, i.e.,

(2:7) 	R[s
�!; s�!0] = 	R[!; !

0]; all !; !0:

The mixed a�ne product is well-de�ned (i.e., absolutely convergent a.e.) if the systems generated

by 	 and R	 are known to be Bessel.

In a way entirely analogous to the computation in Proposition 5.1 of [RS3], we obtain the

following:

Lemma 2.8. Let X and RX be two a�ne Bessel systems generated by 	 and R	, respectively.

Let eG!, ! 2 IRd, be the !-�ber of the mixed dual Gramian of the shift-invariant (Bessel) systems

Xq and (RX)q . Then, the (�; �)-entry, �; � 2 2�ZZd, of this eG! is

eG!(�; �) = 	R[! + �; ! + �]:

Lemma 2.8 when combined with Lemma 2.3 provides a characterization of the property `(RX)q

is dual to Xq'. The requirement is that

	R[! + �; ! + �] = ��;�

for almost every ! 2 IRd, and every �; � 2 2�ZZd. A simple change of variables allows us to reduce

the above condition to

	R[!; ! + �] = ��;0:

Furthermore, if �(�) = k < 0, we may use the s�-invariance of the a�ne product to obtain that

	R[!; ! + �] = 	R[!
0; !0 + �0]; (!0; �0) := s��k(!; �):

Since �(�0) = 0; we have obtained the following characterization:
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Corollary 2.9. Let X and RX be two a�ne Bessel systems generated by 	 and R	 respectively.

Then the following conditions are equivalent.

(a) Xq is a frame and (RX)q is a frame dual to Xq .

(b) For almost every ! 2 IRd, and for every � 2 2�(ZZdns�ZZd),

	R[!; !] = 1; 	R[!; ! + �] = 0:

3. A�ne frames: dual systems

In the �rst subsection we establish connections between dual systems of a�ne frames and dual

systems of their quasi-a�ne counterparts. In the second subsection we show how the vehicle of

multiresolution analysis can be used in the derivation of `extension principles' for the construction

of a�ne frames together with their dual systems.

3.1. Dual systems of a�ne frames: quasi-a�ne analysis

Throughout this section, we assume that X is a fundamental a�ne frame generated by 	.

Thus, by Result 1.9, the quasi-a�ne Xq is a fundamental frame, too. If, now, RX is yet another

given a�ne system generated by R	, we would like to know whether X and RX form a pair

of dual frames. The main tool in that analysis is the �berization of the mixed dual Gramian of

X;RX that was detailed in Lemma 2.8. One should, therefore, keep in mind that the relevant dual

Gramian �bers do not represent the a�ne system, but, rather, its associated quasi-a�ne system

(cf. Corollary 2.9); the ability to analyse the a�ne system via the �berization of its quasi-a�ne

counterpart is due to the established intimate relation between the two systems (Result 1.9). In

the present context, we deal simultaneously with two a�ne systems, the original a�ne system and

its dual system; therefore, we must �rst verify that there is a close relation not only between an

a�ne system and its quasi-a�ne counterpart, but also between the dual systems of these a�ne

and quasi-a�ne systems. We approach that problem with necessary care: as mentioned, the a�ne

frame X may not have an a�ne dual system, and in such cases the notion of `the quasi-a�ne

system of the dual system of X' is nonsense. One should also keep in mind the fact that there may

be many dual systems to the given a�ne one.

We now embark on the actual analysis. In that analysis, we assume to have in hand an a�ne

Bessel system X, and another Bessel system RX, and address the question whether RX is a system

dual to X. We study this question by converting it to the quasi-a�ne domain: i.e., we would like

to consider the related question whether Xq and (RX)q are dual systems. The system Xq is well-

de�ned, and in fact, thanks to Result 1.9, is guaranteed to be Bessel. With the added assumption

that RX is a�ne, too, the system (RX)q is also well-de�ned.

We use in the theorems below the notation

ID := ff 2 L2(IR
d) : bf satis�es (1.10)g:
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Theorem 3.1. Let X be a fundamental a�ne frame generated by 	 � ID.

(a) There exists a bijective correspondence between all dual systems RX � ID of X that are a�ne

and all dual systems Y q � ID of Xq that are quasi-a�ne. The correspondence is given by

RX 7! (RX)q .

(b) In particular, the unique dual basis of a fundamental a�ne Riesz basis X � ID is a�ne and

in ID if and only if the quasi-a�ne (fundamental frame) Xq has a quasi-a�ne dual system

(necessarily, unique) in ID.

(c) If the minimal dual system RqXq � ID of Xq � ID is quasi-a�ne, then the minimal dual

system RX of X is a�ne, and (RX)q = RqXq.

The fact that the map in (a) is well-de�ned (which is a part of the statement in (a)) can already

be found in [CSS] (without the assumption (1.10)).

In the proof, we use the following lemma:

Lemma 3.2. Let X and RX be two a�ne Bessel systems. If, for every " > 0 there exists r > 0

such that, for every f 2 Hr,

(3:3) k(T(RX)qT
�
Xq � I)fk � "kfk;

then (RX)q is a system dual to Xq .

Proof: In order to show that (RX)q is dual to Xq , we should show (Proposition 1.1) that

T(RX)qT
�
Xq is the identity. By Lemma 2.3, this amounts (since Xq is shift-invariant) to showing

that the mixed dual Gramian eG of (RX)q ;Xq is the identity a.e. For that, it su�ces to show

that, given any " > 0, j eG!(�; �) � ��;�j � " for every �; � 2 2�ZZd, and for almost every !. Since
eG!(�; �) = eG!+�(0; � � �), we may assume without loss that � = 0. Now, �x any ! 2 IRdn0,

� 2 2�ZZd, and " > 0. Choose r such that (3.3) holds for every f 2 Hr, and choose k su�ciently

large such js�k!j > r. By the s�-invariance of the mixed a�ne product,

eG!(0; �) = eGs�k!(0; s�k�):
By Lemma 2.4, j eGs�k!(0; s�k�)���j � ", hence also j eG!(0; �)���j � ". Since !; � are independent

of ", we obtain that j eG!(0; �)j = ��, and the desired result follows.

Proof of Theorem 3.1. We �rst note the following: By Result 1.9, an a�ne system Y is Bessel

if and only if its quasi-a�ne counterpart is so. Since, for any system Y discussed below, either Y

or Y q is assumed to be Bessel, we may assume, without loss, that all systems discussed are Bessel.

We start with the proof of (a).

The map RX 7! (RX)q certainly maps injectively all a�ne dual systems of X to quasi-a�ne

Bessel systems. We need to show that every system in the range of this map is not only quasi-a�ne,

but is also dual to Xq. We further need to show that the map discussed is surjective.

We �rst show that, assuming RX is an a�ne dual system of X, (RX)q is a (quasi-a�ne) dual

system of Xq . Since RX is dual to X, TRXT
�
X = I. Now, let T �0�;r be the restriction of the operator

T �XnX0
to Hr (X0 is the truncated a�ne system, as de�ned in x1.3). By Lemma 4.7 of [RS3], there

exists, for any given " > 0, r such that kT �0�;rk < " (cf. display (4.9) and display (4.10) in the proof

of that lemma). Since TRX is assumed bounded, it follows that, on Hr,

kTRX0
T �X0

� Ik � "0:
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At the same time, Lemma 5.4 of [RS3] shows that, for large r, kT �XqnX0
k � " on Hr, and thus, on

Hr,

kT(RX)qT
�
Xq � Ik � "00:

Therefore, Lemma 3.2 implies that (RX)q is a dual system for Xq .

We now show that every quasi-a�ne dual system Y q of Xq gives rise to an a�ne dual of X.

First, since Y q is assumed to be quasi-a�ne, it is necessarily the quasi-a�ne counterpart of some

a�ne system Y (as the suggestive notation Y q indicates). Further, the correspondence between

the elements of Xq and Y q induces a similar correspondence R : X ! Y . We need to prove

that TRXT
�
X = I. For that we �x " > 0, and invoke Lemma 5.4 of [RS3] to �nd a su�ciently

large r such that kT �XqnX0
k � " on Hr. Since T(RX)qT

�
Xq = I by assumption, it follows that,

on Hr, kT(RX)0
T �X0

� Ik � "0. Dilating this inequality, we obtain that, with Xk := D�kX0,

kT(RX)k
T �Xk

� Ik � "0 on D�kHr, and from that it follows that kTRXT
�
X � Ik � "0.

The statement in (b) is certainly a special case of (a). As to (c), if the minimal dual system

of Xq is quasi-a�ne, then, by (a), it is of the form (RX)q , and with RX an a�ne system dual

to X. Since (RX)q is the minimal dual of Xq , the operator T �(RX)qTXq is self-adjoint, a fortiori

its truncated part T �(RX)q0
T(Xq)0

is self-adjoint. Now, let x; x0 2 X. Then, for su�ciently large k,

Dkx;Dkx0 2 X0. Furthermore, RX was de�ned to coincide with RqXq on X0, and to commute

with D, and hence

hRx; x0i =hDkRx;Dkx0i

=hRDkx;Dkx0i

=hRqDkx;Dkx0i

=hDkx;RqDkx0i

=hDkx;RDkx0i

=hDkx;DkRx0i

=hx;Rx0i:

This proves that T �RXTX is self-adjoint, and hence RX is the minimal dual of X.

By combining Corollary 2.9 with Theorem 3.1, we obtain the following result, which was

independently proved by Bin Han in [H]:

Corollary 3.4. Let 	 � L2 be �nite, and R : 	 ! L2 some map. Let X, RX be the a�ne

systems generated by 	, R	. Assuming that 	 and R	 satisfy (1.10), the following conditions are

equivalent:

(a) X is a fundamental frame, and RX is a dual system of X.

(b) X and RX are Bessel systems, and for almost every ! 2 IRd, and for every � 2 2�(ZZdns�ZZd),

	R[!; !] = 1; 	R[!; ! + �] = 0:
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3.2. Multiresolution analysis: the mixed extension principle

In the previous parts of this paper, we established results concerning connections between a�ne

systems and their quasi-a�ne counterparts, and derived from those results certain characterizations

of and other conditions on a�ne frames. However, none of these results explicitly suggest new

methods for constructing a�ne frames.

In this section, we re-examine the results of the previous sections under the additional as-

sumption that the a�ne system is constructed by Multiresolution Analysis (MRA). This will lead

to simple, useful principles for constructing a�ne frames. For simplicity, we assume throughout

this section that the MRA is generated by a single scaling function. The analysis, however, can be

adapted to cover the case of multiple scaling functions (as already indicated in x6 of [RS3] in the

context of tight frames).

At the heart of each MRA sits a function � 2 L2(IR
d) which is known as a scaling function or

a re�nable function or a father wavelet. In fact, there is no universal de�nition to that notion, and

our de�nition here is on the weak side (which is an advantage: by assuming less, we allow in more

scaling functions, hence obtain a wider spectrum of wavelet constructions). It is worth emphasizing

that (a) in the de�nition below in the major assumption, while the two other conditions are mild

and technical.

De�nition 3.5. A function � 2 L2(IR
d) is called a scaling function with respect to a given

dilation matrix s if the following three conditions are satis�ed:

(a) Re�nability: there exists a 2�-periodic function �� 2 L1(TTd) (called the mask) such that,

a.e.,
b�(s��) = ��b�:

(b) b� is continuous at the origin and b�(0) = 1.

(c) � 2 ID, i.e., it satis�es (1.10).

Note that we have embedded, for technical convenience, our mild smoothness assumption

(1.10) into the de�nition of `scaling function'. Note also that, in contrast with most of the wavelet

literature, we are not making a-priori any assumption on the shifts of the scaling function: these

shifts may not be orthonormal, nor they need to form a Riesz basis, nor even a frame.

We denote by

V0

the closed linear span of the shifts of � and by

Vj

the sj-dilate of V0. The re�nability assumption is equivalent to the nestedness assumption Vj �

Vj+1, all j. We mention in passing two other popular conditions in the wavelet literature: the �rst

is that \j2ZZVj = 0. That condition was shown in x4 of [BDR2] to follow from the re�nability

assumption (together with the fact that � 2 L2). The second condition is that [j2ZZVj is dense in

L2(IR
d). That condition is not automatic but follows from our assumption (b) above (cf., again,

x4 of [BDR2]. The corresponding results for FSI scaling functions can be found in [JS]).

16



Since we deal herein with two a�ne systems, we need two re�nable functions to begin with.

We thus assume to be given two such scaling functions � and R� (with respect to the same dilation

matrix s), and denote their corresponding shift-invariant spaces by V0 and V
d
0 , respectively.

In classical MRA constructions of a�ne systems, as initiated in [Ma] and [Me], one selects

jdet sj � 1 (mother) wavelets 	 from the space V1 in some clever way, so that the space W0 which

is spanned by E(	) complements (in some suitable sense) V0 in V1; for example, W0 may be the

orthogonal complement of V0 in V1. Our MRA constructions in [RS3] deviates from this classical

approach: while still selecting the mother wavelets 	 from V1, the shifts of those mother wavelets do

not complement those of �. In fact, in most of our constructions, the spaceW0 is dense in V1. At the

same time, our results here and in [RS3] suggest that successful constructions of a�ne frames and

their dual systems may be carried out under minimal assumptions on the scaling functions and/or

their masks. More speci�cally, we allow the cardinality of the mother wavelet set 	 to exceed the

traditional number jdet sj � 1, and use the acquired degrees of freedom for the constructions of

a�ne frames with desired properties.

For notational convenience, we set

	0 := 	 [ (�);

and abbreviate

(3:6) Z := 2�(s��1ZZd=ZZd):

The assumption 	0 � V1, is equivalent, [BDR1], to the equality

(3:7) b (s��) = � b�;  2 	0;

for some measurable � := (� ) 2	0 whose components are each 2�-periodic. The function �� is the

re�nement mask, and the other � 's are the wavelet masks. Given the masks � ,  2 	0, we

de�ne a (rectangular) matrix � whose rows are indexed by 	0 and whose columns are indexed by

Z as follows:

(3:8) � := (E�� ) 2	0;�2Z :

Based on the results of x3.1, we can extend the MRA constructions of tight a�ne frames (of

[RS3]) to the system/dual system setup. Most of the derivation details follow verbatim those of

[RS3], hence are omitted. In particular, the proof of the result below is identical to the proof of

the corresponding result for the tight frames (x6 of [RS3]): The only di�erence is that we need

to appeal to Corollary 3.4 of this paper, rather than to Corollary 5.7 of [RS3]. We refer to the

construction principle that is established in the following result as the mixed extension principle.

Theorem 3.9. Let � and R� be two scaling functions corresponding to MRAs (Vj)j and (V dj )j ,

respectively. Let 	 be a �nite subset of V1, and let R : 	 ! V d1 be some map. Let � be the

matrix (3.8) that corresponds to 	0 := 	[�, and let �d be the matrix of (3.8) that corresponds to

	0 := R	[R�. Finally, let X and RX be the a�ne systems generated by 	 and R	, respectively.

If

(a) X and RX are Bessel, and

(b) ���d = I, a.e.,

then X and RX are fundamental frames that are dual one to the other.
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With Theorem 3.9 in hand, one can construct compactly supported spline frames with com-

pactly supported dual (spline) frames by simply modifying the algorithm provided in [RS4], where

compactly supported spline tight frames were constructed.

4. A�ne Riesz bases

4.1. Riesz bases and minimal dual systems

In this subsection, we record some observations concerning minimal dual frames and Riesz

bases that are not con�ned to a�ne systems, and then apply those to a�ne systems. We basically

assume here, at the outset, that we are given two dual (a�ne) frames, and would like to verify

whether these systems are bi-orthogonal, i.e., form bi-orthogonal Riesz bases. Of course, the initial

assumption that we have two dual frames can be �rst veri�ed by using the techniques and results

of the previous section.

The spirit in this section is signi�cantly di�erent from previous approaches we chose for the

analysis of a�ne Riesz bases (cf. [RS6] and x4 of [RS3]). Our previous techniques were based on a

direct analysis of the synthesis operator TX using `Gramian methods'. However, we currently �nd

that our `frame techniques' (which analyse the analysis operator T �X using dual Gramian techniques)

are so powerful that it does not make sense to start the Riesz analysis from `scratch'.

For a given frame X, one needs to verify the independence property (i.e., the injectivity of

TX) of the system X in order to conclude that X is a Riesz basis. Establishing that independence

property can, in general, be a formidable challenge; fortunately, the di�culty of that problem is

greatly reduced if one knows that X is a frame, and, further, the minimal dual system is already

known. That is a bit too pretentious to assume: the constructions of the previous section do provide

us with a frame X and a dual frame RX, but do not guarantee RX to be minimal. Thus, our

analysis here is divided into two disjoint problems:

(a) Given a frame X and a dual frame RX of it, decide whether RX is the minimal dual of X,

and

(b) Given a frame X and its minimal dual frame RX, decide whether X is a Riesz basis.

We note that (surprisingly?) the more involved problem is the �rst one.

We start with the following general proposition that was mentioned in the introduction and

was already used in the previous section:

Proposition 4.1. Let X be a frame in a Hilbert space H. Let RX be a frame dual to X. Then

RX is minimally dual if and only if

(4:2) hx;Rx0i = hRx; x0i; all x; x0 2 X:

Proof: Assume �rst that RX is minimal. It is then well-known that R is the restriction

to X of the linear map (TXT
�
X)

�1. Since TXT
�
X is self-adjoint, so is its inverse, hence (4.2) follows.

Assume now that (4.2) holds. Then it is easy to check that, by using (4.2), T �XTRX = T �RXTX :

On the other hand, T �RXTX = (T �XTRX)
� . This implies that T �XTRX is self-adjoint, hence that RX

is minimal.
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We postpone further discussions of the minimality property to the second part of this subsec-

tion, and focus �rst on our second goal: verifying the independence of frames with the aid of their

minimal dual frames:

Theorem 4.3. Let X be a frame in a Hilbert space H and let RX be its minimal dual system.

Then hx;Rxi � 1 of every x 2 X. Furthermore, X is a Riesz system if and only if

(4:4) hx;Rxi = 1; all x 2 X:

Proof: If X is a Riesz system then X and RX are bi-orthogonal hence (4.4) certainly

holds. Conversely, using the minimality of the dual system RX together with Proposition 4.1, we

obtain for an arbitrary x0 2 X that

1 = hx0;Rx0i =
X
x2X

hx0;Rxihx;Rx0i =
X
x2X

hx0;RxihRx; x0i =
X
x2X

jhx;Rx0ij2 = 1 +
X
x6=x0

jhx;Rx0ij2:

Hence, hx;Rx0i = �x;x0 .

Finally, the above argument shows that, always, hx;Rxi is non-negative and that hx;Rxi �

(hx;Rxi)2. Therefore hx;Rxi � 1.

In the case of a�ne frames of L2(IR
d), the above theorem can be slightly improved: if X is

an a�ne system generated by 	, then a typical element x 2 X is of the form x = DkEj . By

de�nition, we have then that Rx = DkEjR : This implies that hx;Rxi = h ;R i here, hence we

obtain from Theorem 4.3 the following corollary:

Corollary 4.5. LetX be an a�ne frame (not necessarily fundamental) generated by 	 and assume

that its minimal dual system is an a�ne system generated by R	. Then X is a Riesz basis if and

only if

h ;R i = 1; all  2 	:

We now turn our attention to the second problem: characterizing the minimality of the dual

frame. Our goal is to apply the basic Proposition 4.1 to a�ne systems. For that, we recall (from

the introduction) the notion of the bracket product:

[f; g] :=
X

�22�ZZd

E�fE�g; f; g 2 L2:

While the a�ne product is the building block of the analysis operator of the a�ne system X, the

bracket product is the building block of the synthesis operator of X.

Corollary 4.6. Let X be an a�ne frame (not necessarily fundamental) generated by 	, and

assume that RX is an a�ne frame dual to X which is generated by R	. Then RX is the minimal

dual of X if and only if, for every  ; 0 2 	, the following conditions hold:

(4:7) [Dk
�
b ;R b 0] = [Dk

�R
b ; b 0]; all k � 0;
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where D�f := jdet s��1j1=2f(s��1�).

Proof: We invoke Proposition 4.1, hence would like to show that (4.7) is equivalent to the

equalities

(4:8) hx;Rx0i = hRx; x0i; x; x0 2 X:

A typical element x 2 X is of the form DkEj ,  2 	, j 2 ZZd, k 2 ZZ. Since D is unitary, we

have then hx;Rx0i = hDkx;DkRx0i, and one easily conclude that we only need to check (4.7) for x

and x0 of the following form:

x = DkEj ; x0 = Ej
0

 0;  ;  0 2 	; j; j0 2 ZZd; k � 0:

Furthermore, DkEj = Es
�kjDk, and since s�kZZd is a sublattice of ZZd for k � 0, and Ej is unitary

we can further reduce the required condition to x, x0 of the form

(4:9) x = Dk ; x0 = Ej 0;  ;  0 2 	; j 2 ZZd; k � 0:

However, it is well-known and easy to check that the numbers

hf;Ejgi; j 2 ZZd

are the Fourier coe�cients of the bracket product [ bf; bg]. Using that �nal identity for the choice

f = Dk , g = R 0, and then using that same identity for f = DkR and g =  0, one �nds that

the conditions required in (4.9) are equivalent to those set in (4.7).

Remark: The conditions (4.7) can be replaced by

(4:10) hDkEj ;REj
0

 0i = hDkEjR ;Ej
0

 0i; k � 0; j; j0 2 ZZd:

We conclude this subsection with the following characterization of a�ne Riesz bases. It is

obtained by combining Corollary 3.4 with Corollaries 4.5 and 4.6. The result is in terms of system-

dual system. We could also obtain a similar result intrinsically in terms of the given a�ne system

X (without searching for a dual system �rst) using our characterization of a�ne frames in [RS3].

We forgo mentioning this additional result since the scope of this paper is limited to the study of

system-dual system setups.

Theorem 4.11. Let 	 � L2, and let R : 	 ! L2 be some map. Assume that the a�ne systems

X and RX generated by 	 and R	 are Bessel and that 	 and R	 satisfy (1.10). Then X and RX

are bi-orthogonal Riesz bases if and only if the following four conditions hold:

(a) h ;R i = 1, all  2 	.

(b) [Dk
�
b ;R b 0] = [Dk

�R
b ; b 0], for every  ; 0 2 	, and every k � 0.

(c) 	R[!; !] = 1, for a.e. !.
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(d) 	R[!; ! + �] = 0, for every � 2 2�(ZZdns�ZZd) and a.e. !.

Remark 4.12. Note that our condition (b) above does not imply directly any bi-orthogonality

relations between X and RX. In fact, we could have completely trivialized the above theorem by

strengthening condition (b) there to

(4:13) [Dk
�
b ;R b 0] = [Dk

�R
b ; b 0] = � ; 0�k;0; k � 0:

Indeed, these stronger assumptions are equivalent to the bi-orthogonality of X0 and RX0, and,

together with the Bessel assumptions, imply that X0 and RX0 are Riesz bases, hence that X and

RX are Riesz bases, too, by Theorem 4.3 of [RS3]. The extra conditions (a,c,d) become then

redundant.

4.2. MRA: Riesz bases

In this subsection we assume that two Bessel systems, X and RX, are constructed via MRA

using the mixed extension principle, Theorem 3.9. By that theorem, the systems are guaranteed to

be fundamental frames one dual to the another. We investigate here the question whether the two

systems are Riesz bases using for that purpose the tools developed in the previous section.

We showed in the last subsection that if RX is already known to be the minimal dual of X,

then the mere additional requirement we need in order to obtain that X is a Riesz basis is the

condition h ;R i = 1, all  2 	 (cf. Corollary 4.5). If the system was constructed according

to the mixed extension principle, then these conditions are equivalent to a single condition on the

scaling function. This result extends Corollary 6.9 in [RS3].

Corollary 4.14. Let X and RX be two dual frames that were constructed according to the mixed

extension principle. Assume further that

(I) The system RX is the minimal dual system of X, and

(II) The extension is square i.e., the cardinality of the mother wavelet set 	 is jdet sj � 1.

Then the following statements are equivalent:

(a) X and RX are bi-orthogonal Riesz bases.

(b) h�;R�i = 1, with � and R� the two underlying scaling functions.

Proof: We adopt the notations used in Theorem 3.9 and in the discussion preceding that

theorem. In particular, � = (� ) 2	0 , and h�;R�i =
P

 2	0 � �R .

Since h�;R�i = 1 a.e., we easily conclude, by integrating the equality

b� Rb� = h�;R�i b� Rb� =
X
 2	0

b (s��)R b (s��);

(and using Parseval's identity) that

jdet sjh�;R�i =
X
 2	0

h ;R i:
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Thus,

(4:15)
X
 2	

h ;R i = (jdet sj � 1)h�;R�i:

Now, if X is a Riesz basis and RX is its dual basis, h ;R i = 1, all  , and with the assumption

that there are exactly jdet sj � 1 wavelets, we obtain that h�;R�i = 1.

Conversely, assuming RX to be the minimal dual frame of X, we conclude from Theorem 4.3

that h ;R i � 1. Substituting that into (4.15), together with the assumption that h�;R�i = 1, we

obtain (in view of the fact that #	 = jdet sj � 1) that h ;R i = 1, all  . Therefore, X is a Riesz

basis and RX is its dual basis, by Corollary 4.5.

Note that Corollary 4.14 assumes that RX is the minimal dual system. Checking the minimal-

ity of RX may not always be possible, even if one uses results like Corollary 4.6. Our last corollary

provides a simple su�cient condition for the Riesz basis property for a pair of dual frames con-

structed by the (square) mixed extension principle. The result is independent of our other results

in this paper, and is also well-known. However, the proof we provide here is rather simple. We

need �rst the following lemma.

Lemma 4.16. Assume that for some scaling functions �;R� 2 L2 the shifts E(�) are bi-orthogonal

to the shifts E(R�). Suppose that 	 and R	 are two mother wavelet sets that are constructed

by the square version of the mixed extension principle (i.e., the number of mother wavelets is

jdet sj � 1), using the above scaling functions. Then

(4:17) [Dk
�
b ;R b 0] = � ; 0�k;0; k � 0:

Proof: We recall our notation 	0 = �[	, � = ��[�	. We will show �rst that Y := E(	0)

are bi-orthogonal to RY = E(R	0). For that, it su�ces to shows that the mixed Gramian of these

two systems is the identity, i.e., that

J�(RY )J(Y ) = I:

A typical row in J(Y ) is of the form

E� b	0 = E�b�(s��1�)E��(s��1�):
We �rst let J1 be the block of J(Y ) corresponding to the 2�s�ZZd rows (remember that the rows

of J are indexed by 2�ZZd), and let J2 be the same block in J(RY ). Thus, with

Z1 := 2�(ZZd=s�ZZd);

J�(RY )J(Y ) =
X
�2Z1

E�(J�2J1):

However, with � and �d the matrices from the extension principle, the re�nablity of 	0 and R	0,

together with the 2�-periodicity of their masks imply that

J�2J1 = (�d)0(s
��1�) Rf f� (�0)

�(s��1�);
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with �0 the column indexed by 0 in �, and f , Rf the (row) vectors

f(�) := b�(s��1 �+�); Rf(�) := Rb�(s��1 �+�); � 2 2�ZZd:

The bi-orthogonality of E(�) and E(R�) then implies that Rf f� = 1, and hence

J�(RY )J(Y ) =
X
�2Z1

E�(J�2J1) =
X
�2Z1

E�((�d)0(s
��1�)(�0)

�(s��1�)) = �d��(s��1�) = I:

This implies that E(R	) are bi-orthogonal to E(	), which is the case k = 0 in (4.17). Furthermore,

this also implies that E(R	) are orthogonal to E(�) hence to V0. However, for k < 0, DkE(	) � V0,

hence this set must be orthogonal to E(R	), which is the case k < 0 in (4.17).

Using Lemma 4.16 and Remark 4.12 we obtain the following well-known result. This result was

�rst established in [CDF] (for the case of compactly supported univariate biorthogonal wavelets),

and was extended since then in various directions (cf. [RiS]).

Corollary 4.18. Assume that � and R� are two scaling functions and that E(�) and E(R�) are

bi-orthogonal Riesz bases. Suppose that X and RX are two a�ne systems that were constructed

by the square version of the mixed extension principle (i.e., the number of mother wavelets is

jdet sj � 1). Then X and RX are fundamental a�ne Riesz bases in L2(IR
d) which are dual one to

the another, provided that they are Bessel systems.
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