
THE ROLE OF INNER SUMMARIES IN THE

FAST EVALUATION OF THIN-PLATE SPLINES

Michael J. Johnson

Department of Mathematics
Kuwait University

yohnson1963@hotmail.com

Nov. 13, 2011

Abstract. The driving force behind fast evaluation of thin-plate splines is the fact that a

sum
Pn2

j=n1
λjφ(x − ξj), where φ(x) = ‖x‖2 log ‖x‖, can be efficiently and accurately ap-

proximated by a truncated Laurent-like series (called an outer summary) when the data sites

{ξj}
n2

j=n1
are clustered in a disk and when the evaluation point x lies well outside this disk.

We present a means (called an inner summary) of approximating this sum when the evalua-

tion point x lies inside the disk. The benefit of having an inner summary available (and of an
improved error estimate for the outer summary), is that one can safely use uniform subdivi-

sion of clusters in the pre-processing phase without concern that an unfortunate distribution
of data sites will lead to an unreasonably large number of clusters. A complete description

and cost analysis of a hierarchical method for fast evaluation is then presented, where, thanks

to uniform subdivision of clusters, the pre-processing is formulated in a way which is suitable
for implementation in a high level computing language like Octave or Matlab.

1. Introduction

Let φ : R2 → R be given by φ(x) = ‖x‖2 log ‖x‖. A thin-plate spline is a function of the
form

(1.1) s(x) =

n∑

j=1

λjφ(x− ξj) + p(x), x ∈ R
2,

where the data sites {ξj} lie in R2, p is a linear polynomial and the coefficients {λj} satisfy
the auxiliary equations

∑n
j=1 λjq(ξj) = 0 for all linear polynomials q.

Such functions are employed in the problem known as “scattered data interpolation”
(see [4], [10], and [7]), where one seeks a ‘nice’ function s satisfying s(ξj) = yj, for some
prescribed data {yj}. In case the data sites {ξj} are non-collinear, there exists a unique

Typeset by AMS-TEX

1

2 INNER SUMMARIES FOR FAST EVALUATION OF THIN-PLATE SPLINES

thin-plate spline which satisfies the interpolation conditions s(ξj) = yj . Although thin-
plate splines have many endearing qualities, there are several drawbacks, one of which is
the high evaluation cost. To appreciate this, one simply notes that a single evaluation of s,
as given in (1.1), requires O(n) floating point operations, and so if both n and the number
of required evaluations of s are large, then the evaluation costs are large2.

Beatson and Newsam [2] were the first to recognize that the fast algorithms being
developed in computational physics by Greengard & Rokhlin [8] and van Dommelen &
Rundensteiner [6] could be adapted to thin-plate splines, enabling their fast evaluation.
The improved efficiency is obtained after an initial expenditure, called pre-processing,
which then enables approximate evaluations of s to be performed at a per evaluation cost
which is far less than O(n) operations. The pre-processing involves arranging the data
sites {ξj} into a quad-tree of clusters, and computing, for each cluster, the coefficients in
a truncated Laurent-like series. The utility of this can be described as follows. Suppose a
cluster of data sites ξn1

, ξn1+1, . . . ξn2
is contained in a disk and we wish to evaluate the

cluster sum

(1.2)

n2∑

j=n1

λjφ(x− ξj)

at a point x which lies outside the disk. If the distance from x to the disk is sufficiently large,
relative to the radius of the disk, it may be possible to obtain an accurate approximation
to the cluster sum by simply evaluating the truncated Laurent-like series. In the sequel,
the truncated Laurent-like series will be referred to as an outer summary of the cluster
sum, where the term outer indicates that the evaluation point x lies outside the disk.

The quad-tree of clusters, produced during the pre-processing phase, is constructed
according to the rule (applied recursively): Any cluster containing at least Q data sites
(Q is a given tuning parameter) will be subdivided into at most 4 child clusters. In [8], [6]
and [2] the subdivisioning is uniform, in that the bounding squares of the child clusters
are obtained by partitioning the bounding square of the parent cluster into four congruent
squares. Uniform subdivision is very desirable because it gives a certain stationarity to
the pre-processing, reminiscent of the simplicity found in wavelet computations. There is,
however, one very serious vulnerability associated with uniform subdivision, and that is
that the number of clusters in the quad-tree can grow, without bound, as the distribution
of the data sites becomes less and less uniform. This can be illustrated with the following
example. Let the number of data sites be Q+ 1 and let k be an arbitrarily large integer.
Define ξ1 = (1, 1), ξ2 = (0, 0) and let the remaining Q − 1 data-sites lie in the square
having opposite corners (0, 0) and (2−k, 2−k). Then the first bounding square (containing
all the data sites) will have (0, 0) and (1, 1) at its corners, it will have exactly one child
(containing Q data sites), whose bounding square has corners (0, 0) and (2−1, 2−1), and
this will be repeated at least k−1 times until a cluster is produced whose bounding square
has corners (0, 0) and (2−k, 2−k). The resulting quad-tree contains more than k clusters,
even though the number of data-sites is only Q+1. As a consequence of this vulnerability,
it is not possible to obtain finite estimates on the pre-processing costs without imposing
restrictions on the distribution of the the data sites. For example, assuming a uniform grid
of data-sites, van Dommelen & Rundensteiner [6] show that their pre-processing requires
O(n logn) operations.

MICHAEL J. JOHNSON 3

Powell [9] proposes the following alternative to uniform subdivision. Any cluster con-
taining more than 2Q data sites will be divided into exactly two child clusters, each of
which contains at least Q data sites. The way this is performed is that the bounding
rectangle of the parent is at first partitioned into two congruent rectangles. If this initial
partitioning results in at least Q data sites in each child, then these are accepted. Other-
wise, the partitioning line is adjusted until the smaller child contains exactly Q data-sites.
Although Powell’s modification ensures that the number of clusters is O(n), the lack of
stationarity greatly complicates the algorithm and this in turn complicates the task of
obtaining meaningful cost estimates for both the pre-processing stage as well as the evalu-
ation stage. Subsequently, Beatson & Light [1] extended Powell’s method to polyharmonic
splines in R2, and recently Beatson, Powell & Tan [3] proposed a method for polyharmonic
splines in three dimensions.

In the present contribution, an alternate means of eliminating the vulnerability associ-
ated with uniform subdivision is proposed. Firstly, we suggest a slight modification to the
way the Laurent-like series is truncated and obtain an estimate on the error in the outer
summary which allows us to potentially employ the outer summary even when the evalua-
tion point x is near, or on, the boundary of the disk containing the cluster of data sites. In
contrast, the error estimate employed in [2], [9] becomes unbounded as x approaches the
disk’s boundary, and consequently, they do not use their outer summary when x is near, or
on, the disk’s boundary. Secondly, we introduce an inner summary of the cluster sum (1.2),
which is defined when x lies inside the disk containing the cluster. The inner summary
becomes more accurate as the radius of the disk becomes small, and this allows one to
determine a maximum level ℓ max such that the summarized value (regardless of whether
x lies inside or outside the disk) of a cluster sum will be of sufficient accuracy whenever
the level of the cluster (ie the number of its ancestors) equals ℓ max. Consequently, the
evaluation algorithm never visits a cluster of level more than ℓ max, and therefore the
pre-processing only needs to construct clusters of level less or equal to ℓ max. The upshot
is that we can safely employ uniform subdivision with the subdivision rule:
A cluster will be subdivided into at most 4 children if
1. the level of the cluster is less than ℓ max, and
2. the cluster contains more than Q data sites.

The sequel is organized as follows. In section 2, the pre-processing is explained, for
simplicity, as the task of constructing a catalog. The outer summaries and their associated
error estimates are constructed in section 3, while section 4 is devoted to inner summaries.
Section 5 explains the determination of certain threshold radii (two for each level) which
are used in the evaluation algorithm (section 6) to determine whether a summarized value
is sufficiently accurate. Estimates for the pre-processing costs and the per evaluation
costs are obtained in sections 7 and 8, respectively. Finally, in section 9, we give some
concluding remarks and describe several numerical experiments which shed some light
on the effectiveness of inner summaries. We mention that the pre-processing has been
formulated in such a way that it can be efficiently implemented in a high level language
like Octave or Matlab. After the catalog has been constructed, it is expected that fast
evaluations are implemented in a low level language like C or Fortran. Both the formulation
and the error estimate for the inner summaries involve some numerically obtained values
which are given as tables in the appendix. Since it might be helpful to start with a rough

4 INNER SUMMARIES FOR FAST EVALUATION OF THIN-PLATE SPLINES

idea of how the evaluation algorithm unfolds, the reader is encouraged to first read section
6, casually, before continuing on to section 2.

For the reader’s convenience, we mention those notations which carry a global meaning.
The natural numbers are denoted N = {1, 2, 3, . . .} and the non-negative integers are
denoted N0. We identify R2 with the complex plane C; in particular the function φ, defined
at the beginning, becomes φ(z) = |z|2 log |z|, z ∈ C. The imaginary unit is denoted ı and
the real and imaginary parts of z are denoted ℜz and ℑz, respectively. The bounding
squares which arise always have sides parallel to the coordinate axes, and the radius of
such a square is defined to be the distance from its center to a vertex. The data sites are
ξ1, ξ2, . . . , ξn (note that there are n of these) and our purpose is to approximately evaluate
the function s(z) =

∑n
j=1 λjφ(z − ξj) with absolute error ≤ δ, where δ > 0 is assumed to

be a given tolerance. The integer m is related to the ‘degree’ of the truncated Laurent-
like series used for outer summaries while m0 plays a similar role for inner summaries.
The univariate functions Em and Em, defined in section 3, are associated with the error
estimates for outer summaries; while εm0

and ε̂m0
, defined in section 4, go with inner

summaries. The integer ℓ is used to denote a level, whereby rℓ denotes the radius of any
cluster having level ℓ. The threshold radii, defined in section 5, are denoted tℓ (for inner
summaries) and Tℓ (for outer summaries).

2. Constructing the Catalog

The pre-processing required before fast evaluations can be performed may be visualized
as the construction of a catalog whose pages are numbered 1, 2, . . . , N . The catalog is
imbued with a tree structure such that every page, except page 1 (the root of the tree),
has a parent and each page has at most four children. The entries on page p are the
following:

1 − 4. pI , . . . , pIV (page number of child q, q = I, II, III, IV)
5, 6. n1, n2 (associated cluster is {ξn1

, ξn1+1, . . . , ξn2
})

7. ℓ (level of page)
8. c ∈ C (center of bounding square Ωp)
9. α ∈ Cm+1 (standardized harmonic moments)
10. β ∈ Cm+1 (standardized biharmonic moments)

A value of 0 in any of the first four entries indicates that the corresponding child does not
exist. The level ℓ equals the number of ancestors in the tree, so the first page has level 0
and the level of a child is one more than that of its parent. The square Ω1 is a square, with
radius r0 > 0, which contains Ξ. The bounding square Ωp (associated with page p) is the
square with center c (entry 8) and radius rℓ = r02

−ℓ, so Ωp is determined by its center and
the level of page p. The cluster associated with page p is Ξp = {ξn1

, ξn1+1, . . . , ξn2
} which

is bounded by Ωp. Note that the mapping ξ 7→ ξ̃ := (ξ − c)/rℓ maps the square Ωp onto
the standard square S, having center 0 and radius 1. The standardized moments (entries
9 and 10) are α = [α0, α1, . . . , αm] ∈ Cm+1 and β = [β0, β1, . . . , βm] ∈ Cm+1 given by

(2.1) αk =

n2∑

j=n1

λj ξ̃j
k

and βk =

n2∑

j=n1

λj

∣∣∣ξ̃j
∣∣∣
2

ξ̃j
k

MICHAEL J. JOHNSON 5

Remark 2.1. Our construction of the catalog ensures that if page p is a parent and if
its bounding square Ωp is divided into four congruent squares, then the bounding square
associated with child I, if it exists, is the upper right square. If child II exists, then its
bounding square is the upper left square, and so on, counter-clockwise.

Remark 2.2. Our construction also ensures that the induced tree of clusters {Ξ1,Ξ2, . . . ,ΞN}
forms a partition-tree of Ξ; that is,
(a) {Ξ1,Ξ2, . . . ,ΞN} is a tree with root Ξ1 = Ξ, and
(b) For each p, either Ξp is childless or the children of Ξp form a partition of Ξp.

Two immediate consequences of the latter remark are firstly that the childless clusters
in {Ξ1,Ξ2, . . . ,ΞN} form a partition of Ξ, and secondly that if distinct pages p and p′ have
the same level, then their associated clusters, Ξp and Ξp′ , are disjoint.

The catalog can be efficiently stored in four matrices: a 7 ×N integer matrix CAT , a
1 × N complex row vector Center and two (m + 1) × N complex matrices H mom and
bi Hmom, where page p of the catalog is stored in column p of these matrices. We now
give an algorithm for creating the catalog, where it is assumed that the integer m ≥ 2, the
centers Ξ ∈ C1×n and the coefficients λ ∈ R1×n are globally visible.

Step 1: Create globally visible variables and matrices r0 ∈ R, N = 0 ∈ N0, CAT ∈ N
7×0
0 ,

Center ∈ C1×0, and H, biH ∈ C(m+2)×0.

Step 2: Identify a smallest square Ω1 which contains Ξ and let c1 ∈ C be its center and
r0 > 0 its radius.

Step 3: Call the recursive function create page (described below) with the command
p = create page(1, n, c1, 0).

Step 4: Set H mom = H(1 : m+ 1, :) and biH mom = biH(2 : m+ 2, :).

Calls to the recursive function create page have the format p = create page(n1, n2, ℓ, c).
The immediate purpose of create page is to create a new page, where entries 5-8 are given
as inputs and the newly created page number p is returned as the output. After creating
page p and registering entries 5-8, create page must decide whether page p will have
children. The decision rule is simply that page p will have children if its cluster contains
at least Q data sites (Q is a fixed tuning parameter) and the level ℓ of page p is less than
the maximum allowable level ℓ max (an integer defined in section 6).

function p = create page(n1, n2, ℓ, c)

1. Increment N and append a column of zeros to CAT , Center, H and biH.

2. Set p = N , CAT (5 : 7, p) =

n1

n2

ℓ

, Center(p) = c.

3a. If n2 − n1 + 1 < Q or ℓ = ℓ max,
compute H(:, p) and biH(:, p) directly.

3b. Otherwise,
Reorder Ξ(n1 : n2), and correspondingly λ(n1 : n2), so that

[n1 n1 + 1 · · · n2] = [JI JII JIII JIV] with
Ξ(Jq) − c lying in quadrant q,

6 INNER SUMMARIES FOR FAST EVALUATION OF THIN-PLATE SPLINES

For q ∈ {I, II, III, IV }, with Jq nonempty,
Call create page to create child q, with cluster Ξ(Jq),

and register the output pq in CAT (q, p).
Add the contributions from child q to H(:, p) and biH(:, p).

end-function

The matrices H and biH, which each have a row more than H mom and biH mom, are

defined by H(:, p) = [α0 α1 · · · αm+1]
T

and biH(:, p) = [α1 β0 β1 · · · βm]
T
,

and so it is clear that H mom = H(1 : m+1, :) and biH mom = biH(2 : m+2, :). In step
3a of create page, the columns H(:, p) and biH(:, p) are computed directly using (2.1). In
step 3b, however, these columns are to be obtained from those of the children. To see how

this can be done, let αk and βk be as defined in (2.1) and put a = [α0 α1 · · · αm+1]
T

and b = [α1 β0 β1 · · · βm]
T
. Let α̃k, β̃k, ã and b̃ be defined the same, except use

{ξ̃j} in place of {ξj} in (2.1), where ξ̃j = τ + σξj for some fixed σ, τ ∈ C. The problem of

determining ã and b̃ from a and b has the following solution.

Theorem 2.3. Let L be the (m+ 2) × (m+ 2) lower triangular matrix defined by

L(i+ 1, j + 1) =

(
i

j

)
σiτ i−j , 0 ≤ i, j ≤ m+ 1.

Then ã = La and b̃ = L (τa+ σb).

Proof. We first observe that

α̃k =

n2∑

j=n1

λj(τ + σξj)
k =

n2∑

j=n1

λj

k∑

d=0

(
k

d

)
σdξd

j τ
k−d =

k∑

d=0

(
k

d

)
σdτk−dαd = L(k + 1, :)a,

and hence ã = La. With similar steps as above, we obtain

β̃k =

n2∑

j=n1

λj |τ + σξj|2 (τ + σξj)
k =

n2∑

j=n1

λj(τ + σξj)(τ + σξj)
k+1

=

k+1∑

d=0

(
k + 1

d

)
σdτk+1−d

n2∑

j=n1

λj(τξ
d
j + σξjξ

d
j)

=

k+1∑

d=0

(
k + 1

d

)
σdτk+1−d

ταd + σ

n2∑

j=n1

λjξjξ
d
j

 .

Noting that

n2∑

j=n1

λjξjξ
d
j =

{
α1 if d = 0

βd−1 if d > 0,
we see that β̃k = L(k + 2, :)(τa + σb)

for k = 0, 1, . . . , m. Since L is lower triangular, L(1, 1) = 1 and α0 is real, we have
L(1, :)(τa + σb) = τα0 + σα1 = τα0 + σα1. On the other hand, noting that L(2, :) =

[τ σ 0 · · · 0], we see that α̃1 = L(2, :)a = τα0+σα1, and hence L(1, :)(τa+σb) = α̃1.

It now follows that b̃ = L (τa+ σb). �

MICHAEL J. JOHNSON 7

Returning to our original concern of implementing the last item in step 3b, for q =
I, II, III, IV , let Lq be the lower triangular matrix defined in Theorem 2.3 with σ = 1

2

and τq =
1

2
ei(2q−1)π/4. It easily follows from Theorem 2.3 that the contribution from child q

to H(:, p) is Lq ∗H(:, pq), and the contribution to biH(:, p) is Lq ∗(τ qH(:, pq)+
1
2biH(:, pq)).

Noting that τq = Lq(2, 1), the last item of step 3b can thus be written explicitly as

(2.2)

temp = Lq ∗H(:, pq)

H(:, p) = H(:, p) + temp

biH(:, p) = biH(:, p) + Lq(2, 1) temp+
1

2
Lq ∗ biH(:, pk)

Remark. Formulae for efficiently obtaining the moments of a cluster from those of its chil-
dren are given in [2, Lemma 3] and [9, eq. (3.15)]. The formulation given above, (2.2), has
been specialized to the case of uniform subdivision and expressed as matrix multiplication
to facilitate its implementation in a high level language like Octave or Matlab.

3. Outer Summaries

Let {ξn1
, ξn1+1, . . . , ξn2

} be a cluster of data sites whose bounding square has center c
and radius rℓ. An outer summary of the cluster sum v(z) =

∑n2

j=n1
λjφ(z−ξj) is a function

Fv which approximates v outside the open disk c+ rℓU
o, where U (resp. Uo) denotes the

closed (resp. open) disk in C with center 0 and radius 1. Our choice of outer summary,
which is very similar to that of [2], is built using an ‘outer approximation’ of the function
z 7→ φ(z − ξ). We first consider the standard case when c = 0 and rℓ = 1.

For s > 0, we define A0(s) = s2 log s, A1(s) = −s2(1+2 log s), Ak(s) =
s2

k(k − 1)
, k ≥ 2,

B0(s) = 1 + log s, and Bk = − 1

k(k + 1)
, k ≥ 1. And for k ∈ N0, let φk : C × C → C be

defined by φk(0, 0) = 0 and

φk(z, ξ) =

{
(ξ/z)k(Ak(|z|) + |ξ|2Bk(|z|)) if |ξ| ≤ |z| 6= 0

(z/ξ)k(Ak(|ξ|) + |z|2Bk(|ξ|)) if |z| < |ξ|

Theorem 3.1. The following hold:
(i) φk(z, ξ) = φk(ξ, z) = φk(ξ, z) = φk(eiθz, eiθξ) for all z, ξ ∈ C, θ ∈ R, k ∈ N0.
(ii) φk is continuous on C × C for all k ∈ N0.

(iii) The series

∞∑

k=0

φk converges uniformly on compact subsets of C × C.

(iv) φ(z − ξ) =
∞∑

k=0

ℜφk(z, ξ) for all z, ξ ∈ C.

Proof. (i) can be verified by inspection. For (ii), it is clear that φk is continuous at
(z0, ξ0) in case |z0| 6= |ξ0|. The case |z0| = |ξ0| 6= 0 is also easy to verify after noting that

8 INNER SUMMARIES FOR FAST EVALUATION OF THIN-PLATE SPLINES

(ξ0/z0)
k = (z0/ξ0)

k and Ak(|z0|)+|ξ0|2Bk(|z0|) = Ak(|ξ0|)+|z0|2Bk(|ξ0|) hold in this case.
The remaining case, z0 = ξ0 = 0, is not so simple. Let us write z = seıγ and ξ = reıθ with

s, r > 0. If r, s ∈ (0, 1], then |φ0(z, ξ)| ≤
{
s2 |log s| + r2(1 + |log s|) if r ≤ s,

r2 |log r| + s2(1 + |log r|) if s < r
, and hence

|φ0(z, ξ)| ≤ r2(1 + |log r|) + s2(1 + |log s|) → 0 as r, s→ 0; hence φ0 is continuous at (0, 0).
Similarly, |φ1(z, ξ)| ≤ r2(1+2 |log r|)+s2(1+2 |log s|) and it follows that φ1 is continuous at

(0, 0). If k > 1, then |φk(z, ξ)| ≤ 1
k(k−1)

{
(r/s)k(s2 + r2) if r ≤ s

(s/r)k(r2 + s2) if s ≤ r
, and hence |φk(z, ξ)| ≤

1
k(k−1) (s

2 + r2) → 0 as r, s → 0. Thus φk is continuous at (0, 0) and we have established

(ii). We will prove (iii) by showing that
∑

k>1 ‖φk‖L∞(RU×RU) <∞ for all R > 0, where U

denotes the closed unit disk in C. If k > 1 and |z| , |ξ| ≤ R, then |φk(z, ξ)| ≤ 1
k(k−1) (|z|

2
+

|ξ|2) ≤ 2R2

k(k−1) , and hence
∑

k>1 ‖φk‖L∞(RU×RU) ≤
∑

k>1
2R2

k(k−1) <∞. Beatson & Newsam

[2, Lemma 1] have proved (iv), using slightly different notation, for the case |z| > |ξ|. In
case |z| < |ξ|, then φ(z − ξ) = φ(ξ − z) =

∑∞
k=0 ℜφk(ξ, z) =

∑∞
k=0 ℜφk(z, ξ), by (i). Now

it follows from (ii) and (iii) that
∑∞

k=0 ℜφk is continuous on C × C. Since the function
(z, ξ) 7→ φ(z− ξ) is also continuous on C×C, and equals the former whenever |z| 6= |ξ| (ie
on a dense subset of C × C), it follows that the two are equal on all of C × C. �

Given an integer m ≥ 2, our outer approximation of φ(z − ξ), when |ξ| ≤ 1 ≤ |z|, is
ℜΨm(z, ξ), where

Ψm(z, ξ) :=

m∑

k=0

φk(z, ξ) =

m∑

k=0

(ξ/z)k(Ak(|z|) + |ξ|2Bk(|z|)).

Note the similarity to the outer approximation used in [2] and [9]:
ℜ
(
Ψm−2(z, ξ) + (ξ/z)m−1Am−1(|z|) + (ξ/z)mAm(|z|)

)
. We note that Ψm inherits prop-

erty (i) of Theorem 3.1 from φk.
Our outer summary of v(z) =

∑n2

j=n1
λjφ(z−ξj) is obtained simply by replacing φ(z−ξj)

with its outer approximation:

(3.1) Fv(z) :=

n2∑

j=n1

λjℜΨm(z, ξj) =
m∑

k=0

Ak(|z|)ℜ(αk/z
k) +Bk(|z|)ℜ(βk/z

k),

where αk =
∑n2

j=n1
λjξ

k
j and βk =

∑n2

j=n1
λj |ξj |2 ξk

j . Our estimate on the error in the
outer summary is expressed using the function

Em(t) =
1

m(m+ 1)
t1−m +

1

(m+ 1)(m+ 2)
t−m, t ≥ 1.

Proposition 3.2. Let m ≥ 2. If |z| ≥ 1, then

|v(z) − Fv(z)| ≤ Em(|z|)
n2∑

j=n1

|λj | .

MICHAEL J. JOHNSON 9

The error estimate used in [2] and [9] is as above, but with Em(|z|) replaced by Bm(|z|),
where Bm(t) = 1

m(m+1)
t+1
t−1

t1−m (see [2, lemma 3]). We mention that Em is an improvement

in that Em(t) < Bm(t) for t > 1, and more importantly, that Em(t) is well-behaved near
t = 1, while Bm(t) is unbounded.

Our proof of Proposition 3.2 employs the error functional

Fm(s) := sup
|z|≥s

max
|ξ|≤1

|φ(z − ξ) − ℜΨm(z, ξ)| , s ≥ 1.

Lemma 3.3. If |z| ≥ 1, then

|v(z) − Fv(z)| ≤ Fm(|z|)
n2∑

j=n1

|λj | .

Proof. The definition of Fm ensures that |φ(z − ξj) − ℜΨm(z, ξj)| ≤ Fm(|z|), and hence

|v(z) − Fv(z)| ≤
n2∑

j=n1

|λj | |φ(z − ξj) − ℜΨm(z, ξj)| ≤ Fm(|z|)
n2∑

j=n1

|λj | .

�

Note that with Lemma 3.3 in hand, Proposition 3.2 can be proved simply by showing
that Fm(s) ≤ Em(s) for s ≥ 1.

Lemma. If k ≥ 2 and |z| ≥ 1, then max
|ξ|≤1

|φk(z, ξ)| = φk(z, z/ |z|).

Proof. Assume k ≥ 2 and |ξ| ≤ 1 ≤ |z|. Then

φk(z, ξ) =

(
ξ

z

)k
(

|z|2
k(k − 1)

− |ξ|2
k(k + 1)

)
=

z−k

k(k − 1)(k + 1)

(
(k + 1) |z|2 − (k − 1) |ξ|2

)
ξk.

Writing |ξ| = r, we have |φk(z, ξ)| =
|z|−k

k(k − 1)(k + 1)
f(r), where f(r) = ((k + 1) |z|2 −

(k − 1)r2)rk, 0 ≤ r ≤ 1. Given that k ≥ 2 and |z| ≥ 1, it is a simple matter to verify
that f(0) = 0, f(1) > 0 and f ′(r) > 0 for 0 < r < 1. Hence f is increasing on [0, 1] and
therefore max

|ξ|≤1
|φk(z, ξ)| = |φk(z, ζ)| whenever |ζ| = 1. The particular choice ζ = z/ |z|

renders φk(z, ζ) real and positive, and hence the desired equality is obtained. �

Lemma 3.4. For m ≥ 2, let Em(t) = φ(t− 1) − Ψm(t, 1), t ≥ 1. The following hold:

(i) Fm(s) = max
t≥s

Em(t), for s ≥ 1.

(ii) Em(t) =
∑

k>m

φk(t, 1) = Em(t) −
∞∑

k=m+1

2t−k

k(k + 1)(k + 2)
, for t ≥ 1.

10 INNER SUMMARIES FOR FAST EVALUATION OF THIN-PLATE SPLINES

Proof. It follows from (iv) of Theorem 3.1 that

(3.2) φ(z − ξ) −ℜΨm(z, ξ) =
∑

k>m

ℜφk(z, ξ),

and hence, by the lemma, that

max
|ξ|≤1

|φ(z − ξ) − ℜΨm(z, ξ)| ≤
∑

k>m

φk(z, z/ |z|).

Substituting ξ = z/ |z| into (3.2) yields the reverse inequality, and therefore the above
inequality holds with equality. But φk(z, z/ |z|) = φk(|z| , 1), by (i) of Theorem 3.1, and
hence it follows that

(3.3) Fm(s) = sup
t≥s

∑

k>m

φk(t, 1).

Before completing the proof of (i), let us first prove (ii), where we note that the first
equality in (ii) is a special case of (3.2). For the second equality, we note that φk(t, 1) =
t2−k

k(k − 1)
− t−k

k(k + 1)
, whence follows the expansion

∑

k>m

φk(t, 1) =
t1−m

m(m+ 1)
+

t−m

(m+ 1)(m+ 2)
+

∑

k>m+2

t2−k

k(k − 1)
−
∑

k>m

t−k

k(k + 1)
.

The proof of (ii) is then completed by combining the two series above into a single series.
Now it follows from (ii) that

∑
k>m φk(t, 1) converges to 0 as t → ∞, and therefore the

supremum in (3.3) is obtained, and we obtain (i) from (3.3) and the first equality in (ii). �

Proof of Proposition 3.2. As mentioned just after the proof of Lemma 3.3, it suffices to
show that Fm(s) ≤ Em(s) for s ≥ 1. It follows from Lemma 3.4 (ii) that Em(t) ≤ Em(t)
for t ≥ 1, and therefore, from (i), that Fm(s) ≤ supt≥s Em(t) = Em(s) for s ≥ 1, where the
equality arises since Em is a decreasing function. �

Having settled the standard case, when c = 0 and rℓ = 1, we consider now the general
case, and to be more specific, let us assume that the cluster {ξn1

, ξn1+1, . . . , ξn2
} is associ-

ated with page p of our catalog whose bounding square Ωp has center c = Center(p) and
radius rℓ = r02

−ℓ, ℓ being the level of page p. For w ∈ C, let w̃ = (w− c)/rℓ and note that

the points {ξ̃n1
, ξ̃n1+1, . . . , ξ̃n2

} are bounded by the standard square (having center 0 and

radius 1). It follows that the function ṽ(w) =
∑n2

j=n1
λjφ(w − ξ̃j) has the outer summary

given in (3.1); specifically,

F
ṽ
(w) =

m∑

k=0

Ak(|w|)ℜ(αk/w
k) +Bk(|w|)ℜ(βk/w

k), |w| ≥ 1,

MICHAEL J. JOHNSON 11

where αk and βk are as given in (2.1) and are stored in H mom(:, p) and biH mom(:, p),
respectively. Now let v denote the cluster sum v(z) =

∑n2

j=n1
λjφ(z − ξj). Using the

identity φ(rw) = (r2 log r) |w|2 + r2φ(w), we see that

v(z) =

n2∑

j=n1

λjφ(rℓ(z̃ − ξ̃j)) =

n2∑

j=n1

λj(r
2
ℓ log rℓ)

∣∣∣z̃ − ξ̃j

∣∣∣
2

+ r2ℓ

n2∑

j=n1

λjφ(z̃ − ξ̃j),

and then substituting
∣∣∣z̃ − ξ̃j

∣∣∣
2

= |z̃|2 − 2ℜ(z̃ξ̃j) +
∣∣∣ξ̃j
∣∣∣
2

yields

(3.4) v(z) = (r2ℓ log rℓ)[α0 |z̃|2 − 2ℜ(z̃α1) + β0] + r2ℓ ṽ(z̃), z ∈ C.

Our outer summary of v is now obtained simply by replacing ṽ with its outer summary:

Fv(z) = (r2ℓ log rℓ)[α0 |z̃|2 − 2ℜ(z̃α1) + β0] + r2ℓFṽ
(z̃), |z − c| ≥ rℓ.

Our error estimate is a direct consequence of Proposition 3.2.

Corollary 3.5. Let m ≥ 2. If |z − c| ≥ rℓ, then

|v(z) − Fv(z)| ≤ r2ℓEm

(|z − c|
rℓ

) n2∑

j=n1

|λj | .

4. Inner Summaries

An inner summary of the cluster sum v(z) =
∑n2

j=n1
λjφ(z − ξj) is a function fv which

approximates v on the ball c + rℓU . As in the previous section, we will first address the
standard case when c = 0 and rℓ = 1. Mimicking our construction of the outer summary,
we will first ‘define’ an inner approximation ℜψm0

(z, ξ) of φ(z − ξ), for z, ξ ∈ U , and then

stipulate that fv(z) =

n2∑

j=n1

λjℜψm0
(z, ξj), z ∈ U . We postulate that ψm0

has the form

(4.1) ψm0
(z, ξ) =

m0∑

k=0

ξk

(|z|
z

)k

(uk(|z|) + |ξ|2 vk(|z|)), z, ξ ∈ U,

where uk and vk are continuous and real-valued on [0, 1] and uk(0) = vk(0) = 0 for

k > 0. In case z = 0, the value |z|
z

is understood to equal 1. The form of ψm0
is chosen

to ensure that ψm0
is continuous and satisfies ψm0

(eiθz, eiθξ) = ψm0
(z, ξ), and so that

fv(z) will equal a z-dependent linear combination of the moments αk =
∑n2

j=n1
λjξ

k
j and

βk =
∑n2

j=n1
λj |ξj|2 ξk

j . Indeed,

fv(z) =

m0∑

k=0

uk(|z|)ℜ
(
(|z| /z)kαk

)
+ vk(|z|)ℜ

(
(|z| /z)kβk

)
, z ∈ U.

12 INNER SUMMARIES FOR FAST EVALUATION OF THIN-PLATE SPLINES

Our error estimate is obtained with the aid of the error functional εm0
: [0, 1] → [0,∞),

defined by
εm0

(s) = max
|ξ|≤1

max
s≤|z|≤1

|φ(z − ξ) −ℜψm0
(z, ξ)| , s ∈ [0, 1].

Since φ(z− ξ) and ℜψm0
are both continuous on U ×U , it follows that εm0

is well-defined,
continuous and, by definition, monotonically decreasing. The proof of the following error
estimate is the same as that of Lemma 3.3, mutatis mutandis.

Proposition 4.1. If |z| ≤ 1, then

|v(z) − fv(z)| ≤ εm0
(|z|)

n2∑

j=n1

|λj | .

Example. If uk and vk are chosen simply as uk = vk = 0, then εm0
(s) = 4 log 2 for all

s ∈ [0, 1].

For other (non-trivial) choices of uk and vk, it is expected that εm0
will be computed

numerically. As a means of reducing the difficulty of this numerical task, we offer the
following.

Proposition 4.2. Let Uup := {z ∈ U : ℑz ≥ 0} and define

γm0
(t) := max

ξ∈Uup

|φ(t− ξ) − ℜψm0
(t, ξ)| , t ∈ [0, 1].

Then εm0
(s) = max

s≤t≤1
γm0

(t), s ∈ [0, 1].

Proof. Fix s ∈ [0, 1] and put Γ = maxs≤t≤1 γm0
(t). It is clear, from the definition

of εm0
, that εm0

(s) ≥ Γ. Let ξ, z ∈ U , with s ≤ |z| ≤ 1, be such that εm0
(s) =

|φ(z − ξ) − ℜψm(z, ξ)|, and let θ ∈ R be such that eiθz = |z|. Then

εm0
(s) =

∣∣φ(eiθz − eiθξ) −ℜψm(eiθz, eiθξ)
∣∣

=
∣∣φ(|z| − eiθξ) − ℜψm(|z| , eiθξ)

∣∣ ≤ γm0
(|z|) ≤ Γ,

where, in the first inequality, if eiθξ does not belong to Uup, then e−iθξ does and the value

φ(|z| − eiθξ) −ℜψm(|z| , eiθξ) equals φ(|z| − e−iθξ) − ℜψm(|z| , e−iθξ). �

With Proposition 4.2 in view, approximate values of εm0
can be obtained as follows:

Choose M ∈ N and put sj = j/M , j = 0, 1, . . . ,M .
Numerically compute γm0

(sj), j = 0, 1, . . . ,M .
Then εm0

(si) ≈ max
i≤j≤M

γm0
(sj) for i = 0, 1, . . . ,M .

We propose that uk and vk be chosen so that ξk
(

|z|
z

)k

(uk(|z|) + |ξ|2 vk(|z|)) approxi-

mates φk(z, ξ), for z, ξ ∈ U . Note that if z = seiω and ξ = reiθ, with 0 ≤ s, r ≤ 1, then
factoring out eık(ω−θ) yields

∣∣∣∣∣φk(z, ξ)− ξk

(|z|
z

)k

(uk(|z|) + |ξ|2 vk(|z|))
∣∣∣∣∣ =

∣∣φk(s, r) − rk(uk(s) + r2vk(s))
∣∣ ,

MICHAEL J. JOHNSON 13

and hence

max
ξ∈U

∣∣∣∣∣φk(z, ξ) − ξk

(|z|
z

)k

(uk(|z|) + |ξ|2 vk(|z|))
∣∣∣∣∣ = max

0≤r≤1

∣∣φk(s, r) − rk(uk(s) + r2vk(s))
∣∣ .

Our stated aim thus simplifies to that of choosing uk and vk so that rk(uk(s) + r2vk(s))
approximates φk(s, r), for s, r ∈ [0, 1]. For s ∈ [0, 1] fixed, we let u∗k(s) and v∗k(s) be such
that the function [0, 1] ∋ r 7→ rk(u∗k(s) + r2v∗k(s)), which belongs to Wk = span{rk, rk+2},
is a best approximation of r 7→ φk(s, r) from Wk. Specific values u∗k(s) and v∗k(s) are easy to
compute numerically, and in Table 1 of the Appendix, we state polynomial approximations
of u∗k and v∗k for k = 0, 1, 2, . . . , 11. With uk and vk chosen to equal these polynomials,
we also compute the resulting function εm0

, using Proposition 4.2, and we state in Table
2 of the Appendix a range-limited polynomial ε̂m0

such that ε̂m0
is continuous, monotone

decreasing and greater or equal to εm0
on [0, 1]. For the remainder of the paper, we

assume only that uk and vk have been chosen in a manner consistent with the requirements
mentioned after (4.1), and we assume that a numerically accessible function ε̂m0

is at hand
which is continuous, monotone decreasing and greater or equal to εm0

on [0, 1].
The transition from the standard case (c = 0, rℓ = 1) to the general case (c = Center(p),

rℓ = r02
−ℓ) is done the same as for the outer summary. In brief, we express v(z) as in

(3.4) and then replace ṽ with its inner summary f
ṽ
, culminating in

fv(z) = (r2ℓ log rℓ)[α0 |z̃|2 − 2ℜ(z̃α1) + β0]

+ r2ℓ

m0∑

k=0

uk(|z̃|)ℜ
(
(|z̃| /z̃)kαk

)
+ vk(|z̃|)ℜ

(
(|z̃| /z̃)kβk

)
, z ∈ c+ rℓU,

where z̃ = (z − c)/rℓ and αk and βk are as given in (2.1) and stored in H mom(:, p) and
biH mom(:, p), respectively. As with the outer summary, our error estimate for the general
case follows immediately from the error estimate for the standard case, namely Proposition
4.1.

Corollary 4.3. If |z − c| ≤ rℓ, then

|v(z) − fv(z)| ≤ r2ℓ εm

(|z − c|
rℓ

) n2∑

j=n1

|λj | .

5. The Threshold Radii

During the evaluation phase of our algorithm, which is fully described in the next
section, whenever a page of the catalog is visited, with an evaluation point z ∈ C and
tolerance δ > 0 in hand, it must be decided whether or not the corresponding cluster sum
v(z) =

∑n2

j=n1
λjφ(z − ξj) can be summarized. As usual, let p denote the page number

of the catalog, ℓ the level of page p, c the center of the bounding square and rℓ = r02
−ℓ

the radius of the bounding square. In this section we carefully examine this decision
and determine threshold radii tℓ and Tℓ whereby the decision is quickly taken simply by
comparing the distance from z to c with the three radii tℓ, rℓ and Tℓ. For the sake of
clarity, we will consider, for the moment, the case |z − c| ≥ rℓ where the outer summary
is defined. Our starting point is the following rule.

14 INNER SUMMARIES FOR FAST EVALUATION OF THIN-PLATE SPLINES

Outer Summarizing Rule. The cluster sum v(z) is summarized by Fv(z) if the error
estimate in Corollary 3.5 ensures that

|v(z) − Fv(z)| ≤
δ

‖λ‖1

n2∑

j=n1

|λj | ,

where ‖λ‖1 :=
∑n

j=1 |λj |.
With Corollary 3.5 in view, one easily sees that our Outer Summarizing Rule is equiv-

alent to

(5.1) Em

(|z − c|
rℓ

)
≤ ρℓ, where ρℓ :=

δ

r2ℓ‖λ‖1
,

and since Em is continuous and decreasing, it follows that this, in turn, is equivalent to

|z − c| ≥ Tℓ, where Tℓ :=

{
rℓ if Em(1) ≤ ρℓ

rℓE−1
m (ρℓ) if Em(1) > ρℓ

Remark 5.1. For the case Em(1) ≤ ρℓ, since Em is C∞, decreasing and convex, the equation
Em(s) = ρℓ can be fearlessly solved (numerically) using Newton’s method initialized with
s0 = 1.

Turning now to the case |z − c| < rℓ, where the inner summary is defined, we begin
with the following rule.

Inner Summarizing Rule. The cluster sum v(z) is summarized by fv(z) if the error
estimate in Corollary 4.3, with ε̂m0

in place of εm0
, ensures that

|v(z) − fv(z)| ≤
δ

‖λ‖1

n2∑

j=n1

|λj | .

Following the steps used for the outer summary above, and with ρℓ as before, one
directly arrives at the equivalent formulation:
v(z) is summarized by fv(z) if |z − c| ≥ tℓ, where

tℓ :=

0 if ε̂m0
(0) ≤ ρℓ

rℓ if ε̂m0
(1) > ρℓ

rℓ min{s ∈ [0, 1] : ε̂m0
(s) ≤ ρℓ} otherwise

If ε̂m0
is as given in Table 2 of the Appendix, then the above definition of tℓ simplifies to

tℓ =

0 if em0
(0) ≤ ρℓ

rℓ if em0
(1) > ρℓ

rℓq
−1
m0

(ρℓ) otherwise

,

and the author suggests, for the latter case, solving the equation qm0
(s) = ρℓ using the

secant method with starting points 0 and 1.
The computation of the threshold radii Tℓ and tℓ is part of the pre-processing phase and

we include the values t2ℓ , r
2
ℓ , T

2
ℓ , for ℓ = 0, 1, . . . , ℓ max, as the appendix of the catalog.

MICHAEL J. JOHNSON 15

6. Fast Evaluation

Given a tolerance δ > 0, we consider the task of evaluating the function s(z) =∑n
j=1 λjφ(z − ξj) to within tolerance δ; specifically, we wish to use the catalog, for a

given evaluation point z, to quickly find a value V satisfying |s(z) − V | ≤ δ. We adopt
Powell’s [9] method of evaluation which uses a stack, storing page numbers, along with
an accumulation variable V . Starting with stack=[1] and V = 0, the algorithm proceeds
iteratively, stopping when the stack is empty. At each iteration, a page number is popped
off the stack and that page is visited. Each visit to a page results in one of the following
actions:

(i) a value is added to V , or
(ii) the page numbers of the children are pushed onto the stack.

The choice is made by first comparing |z − c|2 with the values t2ℓ , r
2
ℓ , T

2
ℓ , which are stored

in the catalog’s appendix, to determine whether the cluster sum v(z) =
∑n2

j=n1
λjφ(z− ξj)

can be summarized. If so, then the summarized value Fv(z) (if T 2
ℓ ≤ |z − c|2) or fv(z) (if

t2ℓ ≤ |z − c|2 < r2ℓ) is added to V . If the cluster sum cannot be summarized, but our page
has children, then action (ii) is performed. And if none of the above applies, we directly
compute the cluster sum and add it to V .

Theorem 6.1. The obtained value V satisfies |s(z) − V | ≤ δ.

Proof. Let P = P1 ∪P2 denote the set of pages which get visited, where P1 contains those
pages resulting in action (i) and P2 contains those pages resulting in action (ii). Note that
P is a sub-tree of our catalog, whose root is page 1, and P1 contains those pages of P
which are childless (relative to P) while P2 contains those pages of P which have children
(in P). Furthermore, the restriction of the partition tree {Ξp} to P forms a partition tree
of Ξ, and consequently (see Remark 2.2) the clusters {Ξp : p ∈ P1} form a partition of Ξ.

It follows that s(z) can be written as s(z) =
∑

p∈P1

vp(z), where vp(z) =

n2(p)∑

j=n1(p)

λjφ(z − ξj)

is the cluster sum associated with page p. On the other hand, the obtained value V arises

as V =
∑

p∈P1

wp, where wp denotes the value added to V when page p was visited. For each

p ∈ P1, either wp is a summary of vp(z), in which case |vp(z) − wp| ≤ δ
‖λ‖1

∑n2(p)
j=n1(p) |λj |,

or wp = vp(z) (obtained by direct evaluation). Hence,

|s(z) − V | =

∣∣∣∣∣∣

∑

p∈P1

(vp(z) − wp)

∣∣∣∣∣∣
≤
∑

p∈P1

|vp(z) − wp|

≤
∑

p∈P1

δ

‖λ‖1

n2(p)∑

j=n1(p)

|λj | =
δ

‖λ‖1

n∑

j=1

|λj | = δ.

�

An important observation, regarding the above evaluation algorithm, is that if a page,
with level ℓ, is visited, and if Tℓ = rℓ and tℓ = 0, then it is guaranteed that action (i) will

16 INNER SUMMARIES FOR FAST EVALUATION OF THIN-PLATE SPLINES

be taken and consequently no children of this page will be visited. So if we define ℓ max
to be the first level ℓ for which both tℓ = 0 and Tℓ = rℓ, then the evaluation algorithm
will never visit a page with a level greater than ℓ max. This is why our catalog need only
include pages of level less or equal to ℓ max. With the definitions of Tℓ and tℓ in view,
we see that ℓ max equals the smallest non-negative integer ℓ such that Em(1) ≤ ρℓ and
εm0

(0) ≤ ρℓ, where ρℓ = δ
r2

ℓ
‖λ‖1

. From this it is a simple matter to work out that

(6.1) ℓ max = max{0,
⌈
log4

r20ε‖λ‖1

δ

⌉
}, where ε := max{Em(1), εm0

(0)}.

7. Pre-Processing Cost

In this section we estimate the cost of constructing the catalog, in terms of floating point
operations (flops) and floating point comparisons (flo-comps). We adopt the viewpoint that
m0 and r0 are fixed and any quantity which depends only on these values will be considered
a constant. Consequently our estimates will involve the variable parameters m,n, δ and
‖λ‖1. For example, the integer ℓ max, defined in (6.1), is O(log(2 + ‖λ‖1/δ)) since r0 is
constant and ε = max{Em(1), εm0

(0)} is bounded independently of m. We assume the
following relations throughout: 2 ≤ m0 ≤ m, r0, δ > 0 and Q, n ≥ 2. It will be seen that
δ and ‖λ‖1 always appear in the ratio ‖λ‖1/δ, so for convenience we set µ := ‖λ‖1/δ.

Let the pages of the catalog be partitioned as C1 ∪ C2, where C1 contains the childless
pages and C2 contains the child-bearing pages. We first estimate the number of flo-comps.
These only arise in the construction of child-bearing pages, specifically in the first half of
step 3a of the function create page. The number of flo-comps which arise during the con-
struction of a page p ∈ C2 is proportional to the number of data sites in the cluster Ξp, and

therefore, the total number of flo-comps needed to construct the catalog is O(
∑N

p=1 #Ξp).
This sum can be stratified according to level, leading to the estimate

N∑

p=1

#Ξp =
ℓ max∑

ℓ=0

∑
{#Ξp : page p has level ℓ} ≤

ℓ max∑

ℓ=0

#Ξ = (1 + ℓ max)n.

We conclude therefore that the number of flo-comps needed to construct the catalog is
O(n log(2 + µ)).

The flops employed in constructing a page p ∈ C1 arise entirely in step 3a of the function
create page, where the moments H(:, p) and biH(:, p) are computed directly using (2.1).
The number of flops employed for this is bounded by a constant multiple of m times the
number of data sites in the associated cluster Ξp, and it follows that the total number of

flops needed to construct all the childless pages is O
(
m
∑

p∈C1
#Ξp

)
. But the childless

clusters {Ξp}p∈C1
form a partition of Ξ (see Remark 2.2), and hence the total number of

flops employed in constructing the pages in C1 is O(mn).
The flops employed in constructing a page p ∈ C2 arise entirely in step 3b of the function

create page, where the number employed is O(m2) since the moments are obtained from
the children (using at most 4 executions of (2.2)). It follows that the total number of
flops employed in constructing the pages in C2 is O(m2#C2), and we therefore direct our
attention to estimating #C2 (the number of child-bearing pages).

MICHAEL J. JOHNSON 17

Proposition. The number of child-bearing pages satisfies

(7.1) #C2 ≤ n

Q

(
4

3
+ log+

4 (4r20ε
Q

n
µ)

)
,

where log+
4 t equals log4 t if t ≥ 1 and equals 0 if 0 < t ≤ 1.

Proof. If #C2 = 0, then (7.1) holds trivially, so assume #C2 > 0. It follows then that
n ≥ Q and ℓ max > 0, and we then obtain from (6.1) that 4ℓ max−1 < r20εµ ≤ 4ℓ max.

Let C2 be partitioned as C2 =
⋃

0≤ℓ<ℓ max

Pℓ, where Pℓ contains the child-bearing pages of

level ℓ. Since each page has at most 4 children, it is clear that #Pℓ ≤ 4ℓ. On the other
hand, since each child-bearing cluster contains at least Q data sites, and since clusters at
the same level are pairwise disjoint, it follows that #Pℓ ≤ n/Q. Therefore,

(7.2) #C2 =
∑

0≤ℓ<ℓ max

#Pℓ ≤
∑

0≤ℓ<ℓ max

min{4ℓ, n/Q}.

In case 4ℓ max−1 ≤ n

Q
, we obtain from (7.2) that #C2 ≤

∑ℓ max−1
ℓ=0 4ℓ < 1

34ℓ max ≤ 4
3

n
Q ,

and we see that (7.1) holds for this case. Considering the remaining case, 4ℓ max−1 >
n

Q
,

let ℓ1 be the smallest integer such that
n

Q
≤ 4ℓ1 , and note that ℓ1 is non-negative since

n ≥ Q. We now obtain from (7.2) that

#C2 ≤
∑

0≤ℓ<ℓ1

4ℓ +
∑

ℓ1≤ℓ<ℓ max

n

Q
<

1

3
4ℓ1 +

n

Q
(ℓ max− ℓ1).

The desired estimate (7.1) is now obtained by employing the inequalities 4ℓ1 ≤ 4
n

Q
,

ℓ max ≤ log4(4r
2
0εµ) and ℓ1 ≥ log4

n
Q . �

Theorem 7.1. The cost of constructing the catalog is at most O(n log(2 + µ)) flo-comps

and O(n)

(
m+

m2

Q
log(2 +

Q

n
µ)

)
flops.

Remark. If µ log(2 +µ) ≤ const n and if m and Q are chosen so that Q ∼ m ∼ log(2 + µ),
then the number of flops mentioned in the theorem above simplifies to O(n log(2 + µ)).

8. Per Evaluation Cost

In this section we estimate the cost, in terms of floating point operations (flops) and
floating point comparisons (flo-comps), of finding a value V ≈ s(z) (with |s(z) − V | ≤ δ)
using Powell’s [9] evaluation method as described in section 6. As in the previous section,
we set µ := ‖λ‖1/δ and we adopt the viewpoint that m0 ≥ 2 and r0 > 0 are fixed and any
quantity which depends only on these values will be considered a constant.

18 INNER SUMMARIES FOR FAST EVALUATION OF THIN-PLATE SPLINES

Given z ∈ C, let P = P1 ∪ P2 be as in the proof of Theorem 6.1. As each page p ∈ P
is visited, the evaluation algorithm first computes |z − cp|2 (using 5 flops) and compares
this value with the values tℓ, rℓ, Tℓ held in the catalog’s appendix (using 2 flo-comps). If
p ∈ P2, then no further flops or flo-comps are performed; while if p ∈ P1, then either a
summarized value is computed and added to V , at a cost of O(m) flops, or the cluster sum
is computed directly and added to V at a cost of O(Q) flops. The total cost, therefore,
is at most 2(#P2) flo-comps and 5(#P2) + O(m + Q)(#P1) flops. Since the parent of
each page in P1 belongs to P2, it follows that #P1 ≤ 4(#P2), and we thus arrive at the
following.

Proposition. The cost, per evaluation, is at most 2(#P2) flo-comps and O(m+Q)(#P2)
flops.

In order to estimate #P2, we partition P2 as P2 =
⋃

0≤ℓ<ℓ max

Pℓ, where Pℓ contains those

pages in P2 of level ℓ. Note that if p ∈ Pℓ, then either rℓ ≤ |z − cp| < Tℓ or |z − cp| < tℓ,
but since tℓ ≤ rℓ ≤ Tℓ, we have |z − cp| < Tℓ in either case. Hence cp lies in the disk with
center z and radius Tℓ for all p ∈ Pℓ.

Lemma. The number of pages in Pℓ satisfies #Pℓ ≤
π

2

(
1 +

Tℓ

rℓ

)2

, 0 ≤ ℓ < ℓ max.

Proof. For p ∈ Pℓ, let Ωo
p be the open region bounded by the bounding square Ωp associated

with page p. Since Ωo
p has center cp and radius rℓ, it follows that Ωo

p has area 2r2ℓ and is
contained in the disk having center z and radius Tℓ + rℓ. Since the collection {Ωo

p}p∈Pℓ
is

pairwise disjoint, it follows that the sum of the areas, namely 2r2ℓ (#Pℓ), is less than the
area of the mentioned disk. Hence 2r2ℓ (#Pℓ) ≤ π(Tℓ + rℓ)

2, whence follows the desired
inequality. �

Theorem. The number of pages in P2 satisfies

#P2 ≤ π

(
4 +

(
2r20µ

m2

)2/(m−1)
)
ℓ max = O(1 + µ2/(m−1)) log(2 + µ).

Proof. Recall from section 5 that
Tℓ

rℓ
=

{
1 if Em(1) ≤ ρℓ

E−1
m (ρℓ) if Em(1) > ρℓ

, where ρℓ =
1

r2ℓµ
. It is

easily verified that Em(s) ≤ 2
m2 s

1−m, s ≥ 1, and therefore

Tℓ

rℓ
≤ max{1,

(
m2

2r2ℓµ

)1/(1−m)

} ≤ 1 +

(
2r2ℓµ

m2

)1/(m−1)

.

It then follows from the lemma that #Pℓ ≤ π

(
4 +

(
2r2

ℓ µ
m2

)2/(m−1)
)

, and then the desired

estimate is a consequence of #P2 =
∑

0≤ℓ<ℓ max #Pℓ, after noting that rℓ ≤ r0. �

Remark 8.1. If m and Q are chosen so that Q ∼ m ∼ log(2+µ), then µ2/(m−1) is bounded
independently of µ, and it follows from the above theorem and proposition that the number
of flo-comps employed is O(log(2+µ)) and the number of flops employed is O(log(2+µ))2.

MICHAEL J. JOHNSON 19

9. Concluding Remarks

The fast evaluation algorithm presented above has been designed to be as simple as
possible, while maintaining competitive performance when compared with the methods
of Beatson & Newsam [2] and Powell [9]. We mention three noteworthy features of the
algorithm.
1. For a given z ∈ C, our algorithm produces a value V with the guaranteed accuracy

(9.1) |s(z) − V | ≤ δ

2. The clusters are obtained via uniform subdivision. Not only is this easy to implement,
it also yields a certain stationarity in the relations between any parent cluster and its
children. One important consequence of this is that the moments of a parent cluster can
be obtained from those of its children, as detailed in (2.2), where, due to the stationarity,
the four lower triangular matrices Lq (q = I, II, III, IV) are fixed, and so can be computed
in advance.
3. The combination of uniform subdivision with Powell’s method of evaluation allows the
error estimates, for inner and outer summaries, to be designed so that the threshold radii
depend only on the level of the cluster. Since the number of levels under consideration is
quite small, we can calculate these threshold radii very precisely without any concern that
these computations will add significantly to the total pre-processing costs.

It is interesting to compare the pre-processing and per-evaluation costs obtained in
sections 7 and 8 with those of [2]. Although no cost estimates are specifically worked out
in [2], it is expected that the cost estimates found in [5] would be applicable. The accuracy
obtained in [5] takes the form |s(z) − V | ≤ C0ε |log ε| ‖λ‖1 for some constant C0. Since it
is not possible to bound the number of clusters (and hence the pre-processing costs) in the
algorithm of [5] without placing some restriction on the distribution of the data sites, it is
assumed in [5] that the minimum separation distance in the data sites is greater than ε.
Under this restriction, they show that the total cost of pre-processing plus n evaluations

(at the data sites) is bounded by O(n |log ε|2) operations. In order to compare this with
our algorithm, we consider the scenario where ‖λ‖1 = nγ/ logn, for some constant γ > 1/2,
with targeted accuracy (9.1), where δ > 0 is constant. Choosing εn = δ

C0γn
−γ , the above

accuracy estimate (for [5]) simplifies, asymptotically, to (9.1) at a cost of O(n(logn)2)
operations. On the other hand, applying the current algorithm to the same scenario, with
q ∼ m ∼ log(2+µ), we obtain from Theorem 7.1 that the pre-processing costs are at most
O(n logn) flo-comps and O(n(logn)2) flops; while it follows from Remark 8.1 that the per-
evaluation costs are at most O(logn) flo-comps and O(logn)2 flops. Thus the combined
cost of pre-processing and n evaluations is O(n logn) flo-comps and O(n(logn)2) flops. We
note that this is exactly the same estimate as for [5].

Our fast evaluation algorithm has been implemented using a combination of the pro-
gramming languages Octave (similar to Matlab) and C. The fast evaluation and the direct
computation of moments (for childless pages) is written in C, while the construction of the
catalog is in Octave. Experiments were run on an Intel-based notebook computer with
Ξ containing 300,000 points. The tables below display, for various values of δ, the time
T0 (in cpu seconds) required to construct the catalog as well as the total execution time

20 INNER SUMMARIES FOR FAST EVALUATION OF THIN-PLATE SPLINES

T = T0 +T1, where T1 is the time required to evaluate the function s at all points in Ξ. For
each choice of tolerance δ, the displayed run corresponds to a choice of m ∈ {3, 4, 5, . . . , 40}
and Q ∈ {32, 48, 72, . . . , 243, 365, 547} aimed at minimizing T (with m0 = min(10, m)).
The other reported values are L (the maximum level in the catalog), N (the number of
pages in the catalog), and max-error (the maximum absolute error in the computed values
of s). We mention that direct evaluation of s at all points in Ξ (implemented in C) requires
around 8000 cpu seconds.

Experiment A. The points in Ξ are chosen randomly in a square of radius
√

2.
δ T T0 L N m Q max-error

0.1 0.70 0.27 1 5 4 ≤ 243 0.0069
0.01 1.86 0.50 3 85 5 ≤ 243 6.7e− 5

1e− 4 7.0 2.6 6 5461 11 ≤ 243 2.1e− 7
1e− 7 15 2.9 6 5461 23 162 4.0e− 11

Experiment B. The points in Ξ are chosen randomly on the curve z = sin 2t+ ı cos t.
δ T T0 L N m Q max-error

0.1 0.58 0.26 1 5 4 ≤ 243 0.0092
0.01 1.6 0.47 3 61 4 ≤ 243 1.9e− 4

1e− 4 3.8 1.0 6 692 9 ≤ 243 6.1e− 7
1e− 7 12 4.5 11 9041 18 108 3.7e− 10

Experiment C. The points in Ξ are chosen randomly in the unit disk, but in a manner
which clusters them near the origin. Specifically, ξj = r200j exp(ı θj), where rj and θj are
chosen randomly in [0.5, 1] and [0, 2π], respectively.

δ T T0 L N m Q max-error
0.1 0.78 0.26 1 5 3 ≤ 243 0.047

0.01 1.56 0.59 3 69 9 ≤ 243 0.0060
0.0001 6.4 1.0 6 241 9 108 8.4e− 5
1e− 7 16 1.8 11 541 13 108 7.6e− 8

In order to gage the contribution to performance made by the inner summaries, we run
the same experiments as above, except that the inner summaries are removed from the
algorithm. This is accomplished by applying uniform subdivision to any cluster having
more than Q data sites and by setting the inner threshold radii to tℓ = rℓ.

Experiment A. (no inner summaries)
δ T T0 L N m Q max-error

0.1 8.0 2.5 6 5461 3 108 0.0012
0.01 8.5 2.6 6 5457 5 243 1.3e− 5

1e− 4 10.1 2.7 6 5457 11 243 2.1e− 7
1e− 7 15 3.0 6 5461 24 162 8.5e− 12

Experiment B. (no inner summaries)
δ T T0 L N m Q max-error

0.1 9.3 4.2 11 9041 3 108 0.0012
0.01 9.6 4.2 11 9041 4 108 5.2e− 5

1e− 4 11 4.3 11 9041 9 108 4.8e− 7
1e− 7 13 3.5 11 6117 20 162 1.1e− 10

Experiment C. (no inner summaries)
δ T T0 L N m Q max-error

0.1 57 13 201 8373 3 108 0.039
0.01 58 13 201 8373 3 108 0.0087

1e− 4 67 13 201 8373 5 108 8.2e− 5

MICHAEL J. JOHNSON 21

1e− 7 85 13 201 8373 13 108 7.6e− 8

Remark. The experiments above indicate that the use of inner summaries is advantageous
when the tolerance δ is large (relative to machine epsilon) or when the data sites exhibit
significant clustering (eg. along a curve or near a single point). We also observe that
despite the use of Octave (rather than C) for the pre-processing, the pre-processing time
T0 has never exceeded more than half of the total execution time T .

10. Appendix

The functions uk and vk, mentioned after Proposition 4.2, have been rendered as polyno-
mials of the form uk(s) = smin(k,2)(ak,5s

5+ak,4s
4+· · ·+ak,0) and vk(s) = smin(k,2)(bk,5s

5+

bk,4s
4+· · ·+bk,0). The coefficients ak,j and bk,j are chosen so that the resultant polynomials

uk and vk are best approximations of u∗k and v∗k, respectively, over [0, 1].

Table 1. Coefficients ak,j , bk,j, 5 ≥ j ≥ 0, k = 0, 1, . . . , 11
j a0,j×1000 a1,j×1000 a2,j×1000 a3,j×1000

5 554.367620292417 2893.55886412027 731.031003205713 2341.32661620336
4 −1676.09740708712 −9339.49407628645 −770.874327514406 −8821.49835122952
3 2470.09369659267 11793.6368491615 −3024.32276316878 13474.7641433104
2 −1203.52135249518 −6768.42560284372 7977.14618583141 −10013.6366810069
1 −52.8727006518332 −918.137296707126 −8446.33066898238 2676.59530316383
0 −91.9698566509581 1338.86126255552 4033.35057062844 509.11563622544

j a4,j×1000 a5,j×1000 a6,j×1000 a7,j×1000

5 1.9805077189544 −232.610217855045 94.3420623565238 483.544548904333
4 −191.184716761647 1160.13164564459 281.605950358639 −1008.51853450323
3 1234.49631789906 −1574.04739676809 −977.255014605228 507.229394042683
2 −2136.22147856583 429.5647934734 599.720595671105 −46.6406891097388
1 973.142640846853 120.336243973952 −78.4709751669653 9.85058726571184
0 201.120062195939 146.624931531191 113.39071471926 78.3442172097633

j a8,j×1000 a9,j×1000 a10,j×1000 a11,j×1000

5 820.188798357444 1030.62107386976 1074.17894164996 1012.30632121686
4 −2219.16234398542 −3022.02281999415 −3255.33606929124 −3141.36052810102
3 2081.52010711887 3184.47676269295 3568.21633474276 3536.67407614013
2 −915.819839589274 −1557.60789160516 −1796.32910237133 −1823.82132240484
1 209.005080795342 360.958684234922 416.178014730804 429.598811570711
0 42.125340160178 17.4630796905773 4.20299165015753 −4.30644933092202

j b0,j×1000 b1,j×1000 b2,j×1000 b3,j×1000

5 −801.240385741798 −3601.73621825062 −704.256714216919 −2622.10856576555
4 2571.33601427813 11755.5745993905 416.475444860944 10079.2378604159
3 −3687.84001392965 −14722.6186348106 4384.74192822409 −15609.861547052
2 2839.00024485265 7444.9931927463 −10423.1407503236 11387.7296423684
1 78.7441405406701 1216.16141807741 10204.8847381105 −2730.9048968497
0 0 −2592.37435715301 −4045.37131332166 −587.425826450344

j b4,j×1000 b5,j×1000 b6,j×1000 b7,j×1000

5 182.616381517056 475.909865650397 76.4883133075081 −413.337911284215
4 −255.873475183468 −1998.93810133627 −985.283989587266 599.060788149772
3 −1127.41887037728 2485.71814882485 1920.85559649614 165.377125423283
2 2432.00124725409 −762.836676183038 −1098.25882450744 −381.222265210761
1 −1053.25811694934 −66.7525754769067 195.299834704462 108.281714803425
0 −228.067166261059 −166.433994812363 −132.910454222927 −96.0165947386465

j b8,j×1000 b9,j×1000 b10,j×1000 b11,j×1000

5 −864.442493894418 −1167.21500736846 −1243.56701410354 −1182.42948213144
4 2196.79262724745 3325.2112659316 3681.98001249953 3592.04612601419
3 −1880.25992188183 −3400.41253079081 −3945.19778814388 −3965.77513405712

22 INNER SUMMARIES FOR FAST EVALUATION OF THIN-PLATE SPLINES

2 739.334326334459 1617.03967945454 1942.5754218434 2008.2558307215
1 −153.664681727 −365.140480497584 −439.715909995292 −464.740057362562
0 −51.6487449675453 −20.5940378403927 −5.16563119112753 5.06695923967167

The function ε̂m0
, mentioned prior to Corollary 4.3, has been rendered as the range-

limited polynomial

ε̂m0
(s) =

em0
(0) if qm0

(s) ≥ em0
(0)

em0
(1) if qm0

(s) ≤ em0
(1)

qm0
(s) otherwise

where qm0
is a polynomial of degree 6, obtained as follows.

Recalling that em0
is continuous and monotonically decreasing on [0, 1], and assuming

that em0
(0) > em0

(1), put a = max{s ∈ [0, 1] : em0
(s) = em0

(0)} and b = min{s ∈ [0, 1] :
em0

(s) = em0
(1)}. Then qm0

is chosen as a polynomial q, of degree ≤ 6, which minimizes∫ b

a
q(s) ds subject to q′ ≤ 0 on [0, 1] and q ≥ em0

on [a, b]. It follows from these constraints
that êm0

≥ em0
on [0, 1], êm0

is monotonically decreasing on [0, 1] and êm0
(0) = em0

(0),
êm0

(1) = em0
(1).

Table 2. Values of em0
(0) and em0

(1).

m0 em0
(0)×1000 em0

(1)×1000 m0 em0
(0)×1000 em0

(1)×1000

3 116.175303273073 83.333333333332 8 119.024609730425 13.8888888888867
4 117.423558079213 50.0000000000003 9 119.158482746193 11.1111111111101
5 118.130701067538 33.3333333333332 10 119.261469158511 9.09090909090689
6 118.558969878066 23.8095238095232 11 119.340234333432 7.57575757575392
7 118.845068773397 17.8571428571421 12 119.402563088249 6.4102564102522

Table 3. Values of coefficients in qm0
(s) =

∑6
j=0 cm0,js

j .

j c3,j×1000 c4,j×1000 c5,j×1000 c6,j×1000 c7,j×1000

6 12868.785375 2819.9143359 1262.8387275 623.44303794 322.43140678
5 −37750.034427 −10407.753697 −5536.1395235 −3333.8933502 −2195.8058886
4 42241.403598 14713.503567 9014.5164921 6181.1804295 4592.1883762
3 −22841.751141 −9572.007321 −6463.1429925 −4779.6249028 −3768.1691423
2 5904.3665471 2652.2069637 1827.8056824 1350.93794 1049.6788509
1 −711.6341796 −323.12376551 −220.58310372 −158.9143657 −119.16277733
0 148.93179931 132.84816696 129.17212618 127.03092397 125.76390294

j c8,j×1000 c9,j×1000 c10,j×1000 c11,j×1000 c12,j×1000

6 205.72993756 195.16526285 243.234007 318.46402077 387.18180856
5 −1678.5226738 −1535.6978285 −1601.647968 −1774.8882031 −1941.3057168
4 3788.1937377 3479.7426795 3447.5009659 3571.1852441 3703.2014337
3 −3219.6206525 −2975.4944643 −2898.3075705 −2924.2870039 −2962.4034168
2 880.56436968 800.54618761 767.47608001 766.10956411 769.05071215
1 −96.807988584 −86.082134776 −81.197513979 −80.442202133 −80.259176058
0 125.14999861 124.96074464 124.9669468 125.07685182 125.19238822

References

1. R.K. Beatson & W.A. Light, Fast evaluation of radial basis functions; Methods for two-dimensional

polyharmonic splines, IMA J. Numer. Anal. 17 (1997), 343–372.

2. R.K. Beatson & G.N. Newsam, Fast evaluation of radial basis function, I, Computers Math Applic

24 (1992), 7–19.
3. R.K. Beatson, M.J.D. Powell & A.M. Tan, Fast evaluation of polyharmonic splines in three dimensions,

IMA J. Numer. Anal. 27 (2007), 427–450.
4. M.D. Buhmann, Radial basis functions: theory and implementations, Cambridge Monographs on

Applied and Computational Mathematics, 12, Cambridge University Press, Cambridge, 2003.

5. J. Carrier, L. Greengard & V. Rokhlin, A fast adaptive multipole algorithm for particle simulations,
SIAM J. Sci. Statist. Comput. 9 (1988), 669–686.

MICHAEL J. JOHNSON 23

6. L. van Dommelen & E.A. Rundensteiner, Fast, adaptive summation of point forces in the two-

dimensional Poisson equation, J. Comput. Phys. 83 (1989), 126–147.
7. G.E. Fasshauer, Meshfree approximation methods with MATLAB, Interdisciplinary Mathematical Sci-

ences, 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.
8. L. Greengard & V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (1987),

325–348.

9. M.J.D. Powell, Truncated Laurent expansions for the fast evaluation of thin plate splines, Numer.
Algorithms 5 (1993), 99–120.

10. H. Wendland, Scattered data approximation, Cambridge Monographs on Applied and Computational

Mathematics, 17, Cambridge University Press, Cambridge, 2005.

