IDEAL INTERPOLATION: MOURRAIN'S CONDITION VS D-INVARIANCE

C. DE BOOR

POB 1076 Eastsound WA 98245 USA E-mail: deboor@cs.wisc.edu

Abstract. Mourrain [Mo] characterizes those linear projectors on a finite-dimensional polynomial space that can be extended to an ideal projector, i.e., a projector on polynomials whose kernel is an ideal. This is important in the construction of normal form algorithms for a polynomial ideal. Mourrain's characterization requires the polynomial space to be 'connected to 1', a condition that is implied by *D*-invariance in case the polynomial space is spanned by monomials. We give examples to show that, for more general polynomial spaces, *D*-invariance and being 'connected at 1' are unrelated, and that Mourrain's characterization need not hold when his condition is replaced by *D*-invariance.

By definition (see [Bi]), **ideal interpolation** is provided by a linear projector whose kernel is an ideal in the ring Π of polynomials (in d real ($\mathbb{F} = \mathbb{R}$) or complex ($\mathbb{F} = \mathbb{C}$) variables). The standard example is Lagrange interpolation; the most general example has been called 'Hermite interpolation' (in [M] and [Bo]) since that is what it reduces to in the univariate case.

Ideal projectors also occur in computer algebra, as the maps that associate a polynomial with its *normal form* with respect to an ideal; see, e.g., [CLO]. It is in this latter context that Mourrain [Mo] poses and solves the following problem. Among all linear projectors N on

$$\Pi_1(F) := \sum_{j=0}^d ()_j F$$

with range the linear space F, characterize those that are the restriction to $\Pi_1(F)$ of an ideal projector with range F. Here,

$$()_j := ()^{\varepsilon_j}, \quad \varepsilon_j := (\delta_{jk} : k = 1:d), \quad j = 0:d,$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 41A05, 41A10, 41A63; Secondary 13P10. The paper is in final form and no version of it will be published elsewhere.

with

$$()^{\alpha}: \mathbb{F}^d \to \mathbb{F}: x \mapsto x^{\alpha} := \prod_{j=1}^d x(j)^{\alpha(j)}$$

a handy if nonstandard notation for the **monomial with exponent** α , with

$$\alpha \in \mathbb{Z}_+^d := \{ \alpha \in \mathbb{Z}^d : \alpha(j) \ge 0, j = 1:d \}.$$

I also use the corresponding notation

 D_i

for the derivative with respect to the jth argument, and

$$D^{\alpha} := \prod_{j=1}^{a} D_j^{\alpha(j)}, \quad \alpha \in \mathbb{Z}_+^d$$

To state Mourrain's result, I also need the following, standard, notations. The (total) **degree** of the polynomial $p \neq 0$ is the nonnegative integer

$$\deg p := \max\{|\alpha| : \widehat{p}(\alpha) \neq 0\},\$$

with

$$p =: \sum_{\alpha} ()^{\alpha} \widehat{p}(\alpha),$$

and

$$|\alpha| \ := \ \sum_j \alpha(j),$$

while

$$\Pi_{< n} := \{ p \in \Pi : \deg p < n \}.$$

THEOREM 1 ([Mo]). Let F be a finite-dimensional linear subspace of Π satisfying Mourrain's condition:

(2)
$$f \in F \implies f \in \Pi_1(F \cap \Pi_{\deg f}),$$

and let N be a linear projector on $\Pi_1(F)$ with range F. Then, the following are equivalent: (a) N is the restriction to $\Pi_1(F)$ of an ideal projector with range F.

(b) The linear maps $M_j: F \to F: f \mapsto N(()_j f), j = 1:d$, commute.

For a second proof of this theorem and some unexpected use of it in the setting of ideal interpolation, see [Bo].

Mourrain's condition (2) implies that, if F contains an element of degree k, it must also contain an element of degree k - 1. In particular, if F is nontrivial, then it must contain a constant polynomial. This explains why Mourrain [Mo] calls a linear subspace satisfying his condition **connected to 1**. Since the same argument can be made in case Fis *D*-invariant, i.e., closed under differentiation, this raises the question what connection if any there might be between these two properties.

In particular, for the special case d = 1, if F is a linear subspace of dimension n and either satisfying Mourrain's condition or being D-invariant, then, necessarily, $F = \prod_{n < n}$. More generally, if F is an n-dimensional subspace in the subring generated by the linear polynomial

$$\langle \cdot, y \rangle : \mathbb{F}^d \to \mathbb{F} : x \mapsto \langle x, y \rangle := \sum_{j=1}^d x(j) y(j)$$

for some $y \neq 0$, then, either way,

$$F = \operatorname{ran}[\langle \cdot, y \rangle^{j-1} : j = 1:n] := \{ \sum_{j=1}^n \langle \cdot, y \rangle^{j-1} a(j) : a \in \mathbb{F}^n \}.$$

As a next example, assume that F is a **monomial** space (meaning that it is spanned by monomials). If such F is D-invariant, then, with each ()^{α} for which $\alpha - \varepsilon_j \in \mathbb{Z}_+^d$, it also contains ()^{$\alpha - \varepsilon_j$} and therefore evidently satisfies Mourrain's condition.

Slightly more generally, assume that F is **dilation-invariant**, meaning that it contains $f(h \cdot)$ for every h > 0 if it contains f or, equivalently, F is spanned by homogeneous polynomials. Then every $f \in F$ is of the form

$$f =: f_{\uparrow} + f_{<\deg f},$$

with f_{\uparrow} the **leading** term of f, i.e., the unique homogeneous polynomial for which

$$\deg(f - f_{\uparrow}) < \deg f,$$

hence in F by dilation-invariance, therefore also

$$f_{\deg f} \in F_{\deg f} := F \cap \prod_{\deg f},$$

while, by the homogeneity of f_{\uparrow} ,

$$\sum_{j=1}^d ()_j D_j(f_{\uparrow}) = (\deg f) f_{\uparrow}$$

(this is **Euler's theorem for homogeneous functions**; see, e.g., [Enc: p281] which gives the reference [E: §225 on p154]). If now F is also D-invariant, then $D_j(f_{\uparrow}) \in F_{\leq \deg f}$, hence, altogether,

$$f \in \Pi_1(F_{\leq \deg f}), \quad f \in F.$$

In other words, if a dilation-invariant finite-dimensional subspace F of Π is D-invariant, then it also satisfies Mourrain's condition.

On the other hand, the linear space

$$\operatorname{ran}[()^{0}, ()^{1,0}, ()^{1,1}] = \{()^{0}a + ()^{1,0}b + ()^{1,1}c : a, b, c \in \mathbb{F}\}$$

fails to be *D*-invariant even though it satisfies Mourrain's condition and is monomial, hence dilation-invariant.

The final example, of a space that is *D*-invariant but does not satisfy Mourrain's condition, is slightly more complicated. In its discussion, I find it convenient to refer to

 $\operatorname{supp} \widehat{p}$

as the **'support'** of the polynomial $p = \sum_{\alpha} ()^{\alpha} \hat{p}(\alpha)$, with the quotation marks indicating that it is not actually the support of p but, rather, the support of its coefficient sequence,

 \hat{p} . The example is provided by the *D*-invariant space *F* generated by the polynomial

$$p = ()^{1,7} + ()^{3,3} + ()^{5,0},$$

hence the 'support' of p is

$$\operatorname{supp} \widehat{p} = \{(1,7), (3,3), (5,0)\}$$

(see (4) below). Here are a first few elements of F:

$$D_1 p = ()^{0,7} + 3()^{2,3} + 5()^{4,0}, \quad D_2 p = 7()^{1,6} + 3()^{3,2},$$

hence

$$D_1 D_2 p = 7()^{0,6} + 9()^{2,2}, \quad D_2^2 p = 42()^{1,5} + 6()^{3,1},$$

also

$$D_1^2 p = 6()^{1,3} + 20^{3,0}, \quad D_1 D_2^2 p = 42()^{0,5} + 18()^{2,1},$$

etc. This shows (see (4) below) that any $q \in \prod_1(F_{\leq \deg p})$ having some 'support' in supp \hat{p} is necessarily a weighted sum of $()_1 D_1 p$ and $()_2 D_2 p$ (and, perhaps, others not having any 'support' in supp \hat{p}), yet $(p, ()_1 D_1 p, ()_2 D_2 p)$ is linearly independent 'on' supp \hat{p} , as the matrix

$$\begin{bmatrix} 1 & 1 & 7 \\ 1 & 3 & 3 \\ 1 & 5 & 0 \end{bmatrix}$$

(of their coefficients indexed by $\alpha \in \operatorname{supp} \widehat{p}$) is evidently 1-1. Consequently,

$$p \notin \Pi_1(F_{\deg p}),$$

i.e., this F does not satisfy Mourrain's condition.

This space also provides the proof that, in Theorem 1, one may not, in general, replace Mourrain's condition by D-invariance.

PROPOSITION 3. Let F be the D-invariant space spanned by

$$p = ()^{1,7} + ()^{3,3} + ()^{5,0}.$$

Then there exists a linear projector, N, on $\Pi_1(F)$ with range F for which (b) but not (a) of Theorem 1 is satisfied.

Proof. For $\alpha, \beta \in \mathbb{Z}_+^d$, set

$$[\alpha \dots \beta] := \{ \gamma \in \mathbb{Z}^d_+ : \alpha \le \gamma \le \beta \},\$$

with

$$\alpha \leq \gamma := \alpha(j) \leq \gamma(j), \ j = 1:d.$$

With this, we determine a basis for F as follows.

Since $D^{0,4}p$ is a positive scalar multiple of $()^{1,3}$, we know, by the *D*-invariance of *F*, that

$$\{()^{\zeta}: \zeta \in [(0,0) \dots (1,3)]\} \subset F.$$

This implies, considering $D^{2,0}p$, that $()^{3,0}$, hence also $()^{2,0}$, is in F. Hence, altogether,

$$F = \Pi_{\Xi_0} \oplus \operatorname{ran}[D^{\alpha}p : \alpha \in [(0,0) \dots (1,3)]],$$

with

$$\Pi_{\Gamma} := \operatorname{ran}[()^{\gamma} : \gamma \in \Gamma]$$

and

$$\Xi_0 := [(0,0) \dots (1,3)] \cup \{(2,0), (3,0)\}.$$

This provides the convenient basis

 $b_{\Xi} := [b_{\xi} : \xi \in \Xi]$

for F, indexed by

$$\Xi := \Xi_0 \cup \Xi_1, \quad \Xi_1 := [(0,4) \dots (1,7)],$$

namely

(4)

$$b_{\xi} := \begin{cases} ()^{\xi}, & \xi \in \Xi_0; \\ D^{(1,7)-\xi}p, & \xi \in \Xi_1. \end{cases}$$

The following schema indicates the sets supp \hat{p} , Ξ_0 , and Ξ_1 , as well as the sets $\partial \Xi_0$ and $\partial \Xi_1$ defined below:

×	\times						\otimes :	$\operatorname{supp} \widehat{p}$
1	党	\times					0:	Ξ_0
1	1	\times					1:	Ξ_1
1	1	\times					+:	$\partial \Xi_0$
1	1	\times					\times :	$\partial \Xi_1$
0	0	+	\otimes					
0	0	+						
0	0	+	+					
0	0	0	0	+	\otimes			

Now, let N be the linear projector on $\Pi_1(F)$ with range F and kernel ran $[b_Z]$, with b_Z obtained by thinning

$$[b_{\Xi}, ()_1 b_{\Xi}, ()_2 b_{\Xi}]$$

to a basis $[b_{\Xi}, b_Z]$ for $\Pi_1(F)$. This keeps the maps $M_j : F \to F : f \mapsto N(()_j f)$ very simple since, as we shall see, for many of the $\xi \in \Xi$, $()_j b_{\xi}$ is an element of the extended basis $[b_{\Xi}, b_Z]$, hence N either reproduces it or annihilates it.

Specifically, it is evident that the following are in F, hence not part of b_Z :

()₁
$$b_{\xi}, \quad \xi \in [(0,0) \dots (0,2)],$$

()₂ $b_{\xi}, \quad \xi \in [(0,0) \dots (1,3)],$

with $()_2 b_{\xi} \in F$ for $\xi = (0,3), (1,3)$ since $D^{(1,6)-\xi}p$ and $()^{\xi+(2,-3)}$ are in F. Further, for each

$$\zeta \in \partial \Xi_0 \cup \partial \Xi_1,$$

with

$$\partial \Xi_0 := \{(2,3), (2,2), (2,1), (3,1), (4,0)\}, \quad \partial \Xi_1 := \{[(2,4)..(2,7)], (1,8), (0,8)\},$$

there is $\xi \in \Xi$ so that, for some j, $\zeta - \xi = \varepsilon_j$. Set, correspondingly,

$$b_{\zeta} := ()_j b_{\xi}.$$

Then, none of these is in F, and, among them, each b_{ζ} is the only one having some 'support' at ζ , hence they form a linearly independent sequence. Therefore, each such b_{ζ} is in b_{Z} .

The remaining candidates for membership in b_Z require a more detailed analysis. We start from the 'top', showing also along the way that (b) of Theorem 1 holds for this F and N by verifying that

(5)
$$M_1 M_2 = M_2 M_1$$
 on b_{ξ}

for every $\xi \in \Xi$.

 $\xi = (1,7)$: As already pointed out, both $()_1 b_{1,7}$ and $()_2 b_{1,7}$ are in b_Z , hence (5) holds trivially for $\xi = (1,7)$.

 $\xi = (0,7), (1,6)$: Both $()_1b_{0,7} = ()^{1,7} + 3()^{3,3} + 5()^{5,0}$ and $()_2b_{1,6} = 7()^{1,7} + 3()^{3,3}$ have their 'support' in that of $p = b_{1,7} = ()^{1,7} + ()^{3,3} + ()^{5,0}$, while, as pointed out and used earlier, the three are independent. Hence $()_1b_{0,7}, ()_2b_{1,6} \in b_Z$, while we already pointed out that $()_2b_{0,7}, ()_1b_{1,6} \in b_Z$, therefore (5) holds trivially.

 $\xi = (0, 6), (1, 5)$: Both $()_1 b_{0,6} = 7()^{1,6} + 9()^{3,2}$ and $()_2 b_{1,5} = 42()^{1,6} + 6()^{3,2}$ have their 'support' in that of $b_{1,6} = 7()^{1,6} + 3()^{3,2}$, but neither is a scalar multiple of $b_{1,6}$. Hence, one is in b_Z and the other is not. Which is which depends on the ordering of the columns of $[b_{\Xi}, ()_1 b_{\Xi}, ()_2 b_{\Xi}]$. Assume the ordering such that $()_2 b_{1,5} \in b_Z$. Then, since we already know that $()_1 b_{1,5} \in b_Z$, (5) holds trivially for $\xi = (1,5)$. Further, $()_1 b_{0,6} =$ $4b_{1,6} - (1/2)()_2 b_{1,5}$, hence $M_1 b_{0,6} = 4b_{1,6}$, while we already know that $()_2 b_{1,6} \in b_Z$ therefore, $M_2 M_1 b_{0,6} = 0$. On the other hand, $()_2 b_{0,6} = 7()^{0,7} + 3()^{3,3}$ has its 'support' in that of $b_{0,7} = ()^{0,7} + 3()^{3,3} + 5()^{4,0}$ but is not a scalar multiple of it, hence is in b_Z , and therefore already $M_2 b_{0,6} = 0$. Thus, (5) also holds for $\xi = (0, 6)$.

 $\xi = (0,5), (1,4)$: Both $()_1 b_{0,5} = 42()^{1,5} + 18()^{3,1}$ and $()_2 b_{1,4} = 210()^{1,5} + 6()^{3,1}$ have their 'support' in that of $b_{1,5} = 42()^{1,5} + 6()^{3,1}$ but $()^{3,1} = b_{3,1}$ was already identified as an element of b_Z , hence neither $()_1 b_{0,5}$ nor $()_2 b_{1,4}$ is in b_Z . But, since $()^{3,1} \in b_Z$, and so $b_{1,5} = Nb_{1,5} = N(42()^{1,5})$, we have $M_1 b_{0,5} = b_{1,5}$ and $M_2 b_{1,4} = 5b_{1,5}$. Since we already know that $()_1 b_{1,5} \in b_Z$, it follows that $M_1 M_2 b_{1,4} = 0$ while we already know that $()_1 b_{1,4} \in b_Z$, hence already $M_1 b_{1,4} = 0$. Therefore, (5) holds for $\xi = (1,4)$. Further, we already know that $()_2 b_{1,5} \in b_Z$, hence $M_2 M_1 b_{0,5} = 0$, while $()_2 b_{0,5} = 42()^{0,6} + 18()^{2,2}$ has the same 'support' as $b_{0,6} = 7()^{0,6} + 9()^{2,2}$ but is not a scalar multiple of it, hence is in b_Z and, therefore, already $M_2 b_{0,5} = 0$, showing that (5) holds for $\xi = (0,5)$.

 $\xi = (0,4)$: $()_2 b_{0,4} = 210()^{0,5} + 18()^{2,1} = 5b_{0,5} - 72b_{2,1}$, with $b_{2,1} \in b_Z$, hence $()_2 b_{0,4}$ is not in b_Z and $M_2 b_{0,4} = 5b_{0,5}$, therefore $M_1 M_2 b_{0,4} = 5M_1 b_{0,5} = 5b_{1,5}$, the last equation from the preceding paragraph. On the other hand, $()_1 b_{0,4} = 210()^{1,4} + 18()^{3,0} = b_{1,4} + 12b_{3,0}$, with both $b_{1,4}$ and $b_{3,0}$ in F, hence $()_1 b_{0,4}$ is not in b_Z , and $M_1 b_{0,4} = b_{1,4} + 12b_{3,0}$, therefore, since $()_2 b_{3,0} = b_{3,1} \in b_Z$, $M_2 M_1 b_{0,4} = M_2 b_{1,4} = 5b_{1,5}$, the last equation from the preceding paragraph. Thus, (5) holds for $\xi = (0, 4)$.

 $\xi = (1,3)$: We already know that $()_1 b_{1,3} = b_{2,3} \in b_Z$ and therefore already $M_1 b_{1,3} = 0$, while $()_2 b_{1,3} = ()^{1,4} = (b_{1,4} - 6b_{3,0})/210 \in F$, therefore $210M_1M_2b_{1,3} = M_1b_{1,4} = 0$, thus (5) holds for $\xi = (1,3)$.

For the remaining $\xi \in \Xi$, each b_{ξ} is a monomial, hence $()_j b_{\xi}$ is again a monomial, and

either in F or not and, if not, then its exponent is in

$$\partial \Xi_0 := \{(2,3), (2,2), (2,1), (3,1), (4,0)\}.$$

Moreover, $()_1()_2 b_{\xi}$ is in F iff $()_2()_1 b_{\xi}$ is. Hence, (5) also holds for the remaining $\xi \in \Xi$. This finishes the proof that, for this F and N, (b) of Theorem 1 holds.

It remains to show that, nevertheless, (a) of Theorem 1 does not hold. For this, observe that $()^{2,1}$ and $()^{4,0}$ are in ker N, as is, e.g., $()_2b_{1,6} = 7()^{1,7} + 3()^{3,3}$, hence $p = ()^{1,7} + ()^{3,3} + ()^{5,0}$ is in the ideal generated by ker N, making it impossible for N to be the restriction to $\Pi_1(F)$ of an ideal projector P with range F since this would place the nontrivial p in both ker P and ran P.

References

- [Bi] G. Birkhoff, The algebra of multivariate interpolation, in: Constructive approaches to mathematical models, C. V. Coffman and G. J. Fix (eds.), Academic Press, New York, 1979, 345–363.
- [Bo] C. de Boor, *Ideal interpolation*, in: Approximation Theory XI: Gatlinburg 2004, C. K. Chui, M. Neamtu, and L. L. Schumaker (eds.), Nashboro Press, Brentwood TN, 2005, 59–91.
- [CLO] David Cox, John Little, and Donal O'Shea, *Ideals, Varieties, and Algorithms*, Undergraduate Texts in Math., Springer-Verlag, New York, 1992.
- [Enc] Encyclopädie der mathematischen Wissenschaften, 1. Band, Teubner, Leipzig, 1898– 1904.
 - [E] L. Euler, Calculus differentialis 1, Ticini, Italy, 1787.
 - [M] H. M. Möller, Mehrdimensionale Hermite-Interpolation und numerische Integration, Math. Z. 148 (1976) 107–118.
- [Mo] B. Mourrain, A new criterion for normal form algorithms, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (13th Intern. Symp., AAECC-13, Honolulu, Hawaii USA, Nov.'99, Proc.), Mark Fossorier, Hideki Imai, Shu Lin, Alan Pol (eds.), Springer Lecture Notes in Computer Science, 1719, Springer-Verlag, Heidelberg, 1999, 430–443.