Cartographers often choose map projections by determining the types of distortion they want to minimize or eliminate. They can also determine which of the three projection types (cylindrical, conic, or azimuthal) best suits their purpose and region of interest. They can attach special importance to certain projection properties such as equal areas, straight rhumb lines or great circles, true direction, conformality, etc., further constricting the choice of a projection.
The toolbox has about 60 different built-in map projections. To list them all, type
maps
. The following table also summarizes them and identifies their
properties. Notes for Special Features are located at the end of the table.
Projection |
Syntax |
Type |
Equal-Area |
Conformal |
Equidistant |
Special Features |
---|---|---|---|---|---|---|
Balthasart |
Cylindrical |
✔ | ||||
Behrmann |
Cylindrical |
✔ | ||||
Bolshoi Sovietskii Atlas Mira |
Cylindrical | |||||
Braun Perspective |
Cylindrical | |||||
Cassini |
Cylindrical |
✔ | ||||
Central |
Cylindrical | |||||
Equal-Area Cylindrical |
Cylindrical |
✔ | ||||
Equidistant Cylindrical |
Cylindrical |
✔ | ||||
Gall Isographic |
Cylindrical |
✔ | ||||
Gall Orthographic |
Cylindrical |
✔ | ||||
Gall Stereographic |
Cylindrical | |||||
Lambert Equal-Area Cylindrical |
Cylindrical |
✔ | ||||
Mercator |
Cylindrical |
✔ |
1 | |||
Miller |
Cylindrical | |||||
Plate Carrée |
Cylindrical |
✔ | ||||
Trystan Edwards |
Cylindrical |
✔ | ||||
Universal Transverse Mercator (UTM) |
Cylindrical |
✔ | ||||
Wetch |
Cylindrical | |||||
Apianus II |
Pseudocylindrical | |||||
Collignon |
Pseudocylindrical |
✔ | ||||
Craster Parabolic |
Pseudocylindrical |
✔ | ||||
Eckert I |
Pseudocylindrical | |||||
Eckert II |
Pseudocylindrical |
✔ | ||||
Eckert III |
Pseudocylindrical | |||||
Eckert IV |
Pseudocylindrical |
✔ | ||||
Eckert V |
Pseudocylindrical | |||||
Eckert VI |
Pseudocylindrical |
✔ | ||||
Fournier |
Pseudocylindrical |
✔ | ||||
Goode Homolosine |
Pseudocylindrical |
✔ | ||||
Hatano Asymmetrical Equal-Area |
Pseudocylindrical |
✔ | ||||
Kavraisky V |
Pseudocylindrical |
✔ | ||||
Kavraisky VI |
Pseudocylindrical |
✔ | ||||
Loximuthal |
Pseudocylindrical | 2 | ||||
McBryde-Thomas Flat-Polar Parabolic |
Pseudocylindrical |
✔ | ||||
McBryde-Thomas Flat-Polar Quartic |
Pseudocylindrical |
✔ | ||||
McBryde-Thomas Flat-Polar Sinusoidal |
Pseudocylindrical |
✔ | ||||
Mollweide |
Pseudocylindrical |
✔ | ||||
Putnins P5 |
Pseudocylindrical | |||||
Quartic Authalic |
Pseudocylindrical |
✔ | ||||
Robinson |
Pseudocylindrical | |||||
Sinusoidal |
Pseudocylindrical |
✔ | ||||
Tissot Modified Sinusoidal |
Pseudocylindrical |
✔ | ||||
Wagner IV |
Pseudocylindrical |
✔ | ||||
Winkel I |
Pseudocylindrical | |||||
Albers Equal-Area Conic |
Conic |
✔ | ||||
Equidistant Conic |
Conic |
✔ | ||||
Lambert Conformal Conic |
Conic |
✔ | ||||
Murdoch I Conic |
Conic |
✔ |
3 | |||
Murdoch III Minimum Error Conic |
Conic |
✔ |
3 | |||
Bonne |
Pseudoconic |
✔ | ||||
Werner |
Pseudoconic |
✔ | ||||
Polyconic |
Polyconic | |||||
Van Der Grinten I |
Polyconic | |||||
Breusing Harmonic Mean |
Azimuthal | |||||
Equidistant Azimuthal |
Azimuthal |
✔ | ||||
Gnomonic |
Azimuthal |
4 | ||||
Lambert Azimuthal Equal-Area |
Azimuthal |
✔ | ||||
Orthographic |
Azimuthal | |||||
Stereographic |
Azimuthal |
✔ |
5 | |||
Universal Polar Stereographic (UPS) |
Azimuthal |
✔ |
5 | |||
Vertical Perspective Azimuthal |
Azimuthal | |||||
Wiechel |
Pseudoazimuthal |
✔ | ||||
Aitoff |
Modified Azimuthal | |||||
Briesemeister |
Modified Azimuthal |
✔ | ||||
Hammer |
Modified Azimuthal |
✔ | ||||
Globe |
Spherical |
✔ |
✔ |
✔ |
6 |
Straight rhumb lines.
Rhumb lines from central point are straight, true to scale, and correct in azimuth.
Correct total area.
Straight line great circles.
Great and small circles appear as circles or lines.
Three-dimensional display (not a map projection).