Linear approximation of nonlinear ARX and Hammerstein-Wiener models for given input
lm = linapp(nlmodel,u)
lm = linapp(nlmodel,umin,umax,nsample)
lm = linapp(nlmodel,u)
computes a linear
approximation of a nonlinear ARX or Hammerstein-Wiener model by simulating
the model output for the input signal u
, and estimating
a linear model lm
from u
and
the simulated output signal. lm
is an idpoly
model.
lm = linapp(nlmodel,umin,umax,nsample)
computes
a linear approximation of a nonlinear ARX or Hammerstein-Wiener model
by first generating the input signal as a uniformly distributed white
noise from the magnitude range umin
and umax
and
(optionally) the number of samples.
nlmodel
Name of the idnlarx
or idnlhw
model
object you want to linearize.
u
Input signal as an iddata
object
or a real matrix.
Dimensions of u
must match the number of
inputs in nlmodel
.
[umin,umax]
Minimum and maximum input values for generating white-noise
input with a magnitude in this rectangular range. The sample length
of this signal is nsample
.
nsample
Optional argument when you specify [umin,umax]
.
Specifies the length of the white-noise input.
Default: 1024
.
idnlarx
| idnlarx/findop
| idnlarx/linearize
| idnlhw
| idnlhw/findop
| idnlhw/linearize