This example shows how to perform imputation of missing data in the credit scorecard workflow using the k-nearest neighbors (kNN) algorithm.
The kNN algorithm is a nonparametric method used for classification and regression. In both cases, the input consists of the k-closest training examples in the feature space. The output depends on whether kNN is used for classification or regression. In kNN classification, an object is classified by a plurality vote of its neighbors, and the object is assigned to the class most common among its k-nearest neighbors. In kNN regression, the output is the average of the values of k-nearest neighbors. For more information on the kNN algorithm, see fitcknn
.
For additional information on alternative approaches for "treating" missing data, see Credit Scorecard Modeling with Missing Values.
Use the dataMissing
data set to impute missing values for the CustAge
(numeric) and ResStatus
(categorical) predictors.
load CreditCardData.mat
disp(head(dataMissing));
CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status ______ _______ ___________ ___________ _________ __________ _______ _______ _________ ________ ______ 1 53 62 <undefined> Unknown 50000 55 Yes 1055.9 0.22 0 2 61 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0 3 47 30 Tenant Employed 37000 61 No 877.23 0.29 0 4 NaN 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0 5 68 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0 6 65 13 Home Owner Employed 48000 59 Yes 968.18 0.15 0 7 34 32 Home Owner Unknown 32000 26 Yes 717.82 0.02 1 8 50 57 Other Employed 51000 33 No 3041.2 0.13 0
In this example, the 'CustID'
and 'status'
columns are removed in the imputation process as those are the id
and response
values respectively. Alternatively, you can choose to leave the 'status'
column in.
dataToImpute = dataMissing(:,setdiff(dataMissing.Properties.VariableNames,... {'CustID','status'},'stable'));
Create dummy variables for all categorical predictors so that the kNN algorithm can compute the Euclidean distances.
dResStatus = dummyvar(dataToImpute.ResStatus); dEmpStatus = dummyvar(dataToImpute.EmpStatus); dOtherCC = dummyvar(dataToImpute.OtherCC);
'k'
in the kNN algorithm is based on feature similarity. Choosing the right value of 'k'
is a process called parameter tuning, which is important for greater accuracy. There is no physical way to determine the "best" value for 'k'
, so you have to try a few values before settling on one. Small values of 'k'
can be noisy and subject to the effects of outliers. Larger values of 'k'
have smoother decision boundaries, which mean lower variance but increased bias.
For the purpose of this example, choose 'k'
as the square root of the number of samples in the data set. This is a generally accepted value for 'k'
. Choose a value of 'k'
that is odd in order to break a tie between two classes of data.
numObs = height(dataToImpute); k = round(sqrt(numObs)); if ~mod(k,2) k = k+1; end
Get the missing values from the CustAge
and ResStatus
predictors.
missingResStatus = ismissing(dataToImpute.ResStatus); missingCustAge = ismissing(dataToImpute.CustAge);
Next, follow these steps:
custAgeToImpute = dataToImpute; custAgeToImpute.HomeOwner = dResStatus(:,1); custAgeToImpute.Tenant = dResStatus(:,2); custAgeToImpute.Employed = dEmpStatus(:,1); custAgeToImpute.HasOtherCC = dOtherCC(:,2); custAgeToImpute = removevars(custAgeToImpute, 'ResStatus'); custAgeToImpute = removevars(custAgeToImpute, 'EmpStatus'); custAgeToImpute = removevars(custAgeToImpute, 'OtherCC'); knnCustAge = fitcknn(custAgeToImpute, 'CustAge', 'NumNeighbors', k, 'Standardize',true); imputedCustAge = predict(knnCustAge,custAgeToImpute(missingCustAge,:)); resStatusToImpute = dataToImpute; resStatusToImpute.Employed = dEmpStatus(:,1); resStatusToImpute.HasOtherCC = dOtherCC(:,2); resStatusToImpute = removevars(resStatusToImpute, 'EmpStatus'); resStatusToImpute = removevars(resStatusToImpute, 'OtherCC'); knnResStatus = fitcknn(resStatusToImpute, 'ResStatus', 'NumNeighbors', k, 'Standardize', true); imputedResStatus = predict(knnResStatus,resStatusToImpute(missingResStatus,:));
Create a new data set with the imputed data.
knnImputedData = dataMissing; knnImputedData.CustAge(missingCustAge) = imputedCustAge; knnImputedData.ResStatus(missingResStatus) = imputedResStatus; disp(knnImputedData(5:10,:));
CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status ______ _______ ___________ __________ _________ __________ _______ _______ _________ ________ ______ 5 68 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0 6 65 13 Home Owner Employed 48000 59 Yes 968.18 0.15 0 7 34 32 Home Owner Unknown 32000 26 Yes 717.82 0.02 1 8 50 57 Other Employed 51000 33 No 3041.2 0.13 0 9 50 10 Tenant Unknown 52000 25 Yes 115.56 0.02 1 10 49 30 Home Owner Unknown 53000 23 Yes 718.5 0.17 1
disp(knnImputedData(find(missingCustAge,5),:));
CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status ______ _______ ___________ __________ _________ __________ _______ _______ _________ ________ ______ 4 52 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0 19 55 14 Home Owner Employed 51000 11 Yes 519.46 0.42 1 138 41 31 Other Employed 41000 2 Yes 1101.8 0.32 0 165 37 21 Home Owner Unknown 38000 70 No 1217 0.2 0 207 48 38 Home Owner Employed 48000 12 No 573.9 0.1 0
disp(knnImputedData(find(missingResStatus,5),:));
CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status ______ _______ ___________ __________ _________ __________ _______ _______ _________ ________ ______ 1 53 62 Tenant Unknown 50000 55 Yes 1055.9 0.22 0 22 51 13 Tenant Employed 35000 33 Yes 468.85 0.01 0 33 46 8 Home Owner Unknown 32000 26 Yes 940.78 0.3 0 47 52 56 Tenant Employed 56000 79 Yes 294.46 0.12 0 103 64 49 Tenant Employed 50000 35 Yes 118.43 0 0
Plot a histogram of the predictor values before and after imputation.
Predictor ="CustAge"; f1 = figure; ax1 = axes(f1); histogram(ax1,knnImputedData.(Predictor),'FaceColor','red','FaceAlpha',1); hold on histogram(ax1,dataMissing.(Predictor),'FaceColor','blue','FaceAlpha',1); legend(strcat("Imputed ", Predictor), strcat("Observed ", Predictor)); title(strcat("Histogram of ", Predictor));
Use the imputed data to create the creditscorecard
object, and then use autobinning
, fitmodel
, and formatpoints
to create a credit scorecard model.
sc = creditscorecard(knnImputedData,'IDVar','CustID'); sc = autobinning(sc); [sc,mdl] = fitmodel(sc,'display','off'); sc = formatpoints(sc,'PointsOddsAndPDO',[500 2 50]); PointsInfo = displaypoints(sc); disp(PointsInfo);
Predictors Bin Points ______________ _____________________ ______ {'CustAge' } {'[-Inf,33)' } 52.425 {'CustAge' } {'[33,37)' } 56.637 {'CustAge' } {'[37,40)' } 57.392 {'CustAge' } {'[40,45)' } 66.957 {'CustAge' } {'[45,48)' } 80.031 {'CustAge' } {'[48,58)' } 80.54 {'CustAge' } {'[58,Inf]' } 97.928 {'CustAge' } {'<missing>' } NaN {'ResStatus' } {'Tenant' } 63.009 {'ResStatus' } {'Home Owner' } 72.35 {'ResStatus' } {'Other' } 92.439 {'ResStatus' } {'<missing>' } NaN {'EmpStatus' } {'Unknown' } 58.91 {'EmpStatus' } {'Employed' } 86.808 {'EmpStatus' } {'<missing>' } NaN {'CustIncome'} {'[-Inf,29000)' } 30.822 {'CustIncome'} {'[29000,33000)' } 56.555 {'CustIncome'} {'[33000,35000)' } 68.016 {'CustIncome'} {'[35000,40000)' } 70.153 {'CustIncome'} {'[40000,42000)' } 70.943 {'CustIncome'} {'[42000,47000)' } 82.062 {'CustIncome'} {'[47000,Inf]' } 96.092 {'CustIncome'} {'<missing>' } NaN {'TmWBank' } {'[-Inf,12)' } 50.924 {'TmWBank' } {'[12,23)' } 60.953 {'TmWBank' } {'[23,45)' } 61.759 {'TmWBank' } {'[45,71)' } 93.05 {'TmWBank' } {'[71,Inf]' } 133.51 {'TmWBank' } {'<missing>' } NaN {'OtherCC' } {'No' } 50.656 {'OtherCC' } {'Yes' } 75.67 {'OtherCC' } {'<missing>' } NaN {'AMBalance' } {'[-Inf,558.88)' } 89.682 {'AMBalance' } {'[558.88,1254.28)' } 63.136 {'AMBalance' } {'[1254.28,1597.44)'} 59.779 {'AMBalance' } {'[1597.44,Inf]' } 49.286 {'AMBalance' } {'<missing>' } NaN
Create a data set of 'new customers'
and then calculate the scores and probabilities of default.
dataNewCustomers = dataMissing(1:20,1:end-1); disp(head(dataNewCustomers));
CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate ______ _______ ___________ ___________ _________ __________ _______ _______ _________ ________ 1 53 62 <undefined> Unknown 50000 55 Yes 1055.9 0.22 2 61 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 3 47 30 Tenant Employed 37000 61 No 877.23 0.29 4 NaN 75 Home Owner Employed 53000 20 Yes 157.37 0.08 5 68 56 Home Owner Employed 53000 14 Yes 561.84 0.11 6 65 13 Home Owner Employed 48000 59 Yes 968.18 0.15 7 34 32 Home Owner Unknown 32000 26 Yes 717.82 0.02 8 50 57 Other Employed 51000 33 No 3041.2 0.13
Perform the same preprocessing on the 'new customers'
data as on the training data.
dResStatusNewCustomers = dummyvar(dataNewCustomers.ResStatus); dEmpStatusNewCustomers = dummyvar(dataNewCustomers.EmpStatus); dOtherCCNewCustomers = dummyvar(dataNewCustomers.OtherCC); dataNewCustomersCopy = dataNewCustomers; dataNewCustomersCopy.HomeOwner = dResStatusNewCustomers(:,1); dataNewCustomersCopy.Tenant = dResStatusNewCustomers(:,2); dataNewCustomersCopy.Employed = dEmpStatusNewCustomers(:,1); dataNewCustomersCopy.HasOtherCC = dOtherCCNewCustomers(:,2); dataNewCustomersCopy = removevars(dataNewCustomersCopy, 'ResStatus'); dataNewCustomersCopy = removevars(dataNewCustomersCopy, 'EmpStatus'); dataNewCustomersCopy = removevars(dataNewCustomersCopy, 'OtherCC');
Predict the missing data in the scoring data set with the same imputation model as before.
missingCustAgeNewCustomers = isnan(dataNewCustomers.CustAge); missingResStatusNewCustomers = ismissing(dataNewCustomers.ResStatus); imputedCustAgeNewCustomers = round(predict(knnCustAge, dataNewCustomersCopy(missingCustAgeNewCustomers,:))); imputedResStatusNewCustomers = predict(knnResStatus, dataNewCustomersCopy(missingResStatusNewCustomers,:)); dataNewCustomers.CustAge(missingCustAgeNewCustomers) = imputedCustAgeNewCustomers; dataNewCustomers.ResStatus(missingResStatusNewCustomers) = imputedResStatusNewCustomers;
Use score
to calculate scores of new customers.
[scores, points] = score(sc, dataNewCustomers); disp(scores);
530.4076 553.7430 506.8439 562.0948 552.9379 585.0343 445.0174 517.5798 525.6620 508.4568 497.5853 540.2558 516.5434 491.3461 567.6451 486.5128 475.7897 468.7094 552.0658 510.3532
disp(points);
CustAge ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance _______ _________ _________ __________ _______ _______ _________ 80.54 63.009 58.91 96.092 93.05 75.67 63.136 97.928 72.35 86.808 96.092 61.759 75.67 63.136 80.031 63.009 86.808 70.153 93.05 50.656 63.136 80.54 72.35 86.808 96.092 60.953 75.67 89.682 97.928 72.35 86.808 96.092 60.953 75.67 63.136 97.928 72.35 86.808 96.092 93.05 75.67 63.136 56.637 72.35 58.91 56.555 61.759 75.67 63.136 80.54 92.439 86.808 96.092 61.759 50.656 49.286 80.54 63.009 58.91 96.092 61.759 75.67 89.682 80.54 72.35 58.91 96.092 61.759 75.67 63.136 80.54 63.009 58.91 68.016 61.759 75.67 89.682 80.54 92.439 58.91 82.062 60.953 75.67 89.682 97.928 72.35 58.91 96.092 50.924 50.656 89.682 66.957 92.439 58.91 70.943 61.759 50.656 89.682 80.031 92.439 86.808 82.062 60.953 75.67 89.682 56.637 72.35 86.808 70.153 61.759 75.67 63.136 57.392 63.009 86.808 68.016 61.759 75.67 63.136 52.425 72.35 86.808 30.822 60.953 75.67 89.682 80.54 72.35 86.808 96.092 50.924 75.67 89.682 80.54 92.439 58.91 82.062 60.953 75.67 59.779