
Java SEMonitoring and
ManagementGuide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA95054
U.S.A.

Part No: N/A
October 2006

Copyright 2006 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS”ANDALLEXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONSAND WARRANTIES, INCLUDINGANY
IMPLIED WARRANTYOF MERCHANTABILITY, FITNESS FORAPARTICULAR PURPOSE OR NON-INFRINGEMENT,ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERSARE HELD TO BE LEGALLY INVALID.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis et
dans d’autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient
une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l’interface
d’utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l’objet de cette publication et les informations qu’il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LADOCUMENTATION EST FOURNIE "EN L’ETAT" ET TOUTESAUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LAMESUREAUTORISEE PAR LALOIAPPLICABLE, YCOMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVEALAQUALITE MARCHANDE,AL’APTITUDEAUNE UTILISATION PARTICULIERE OUAL’ABSENCE DE CONTREFACON.

060811@15490

Contents

Preface ... 7

1 Overview of Java SEMonitoring andManagement .. 11
Key Monitoring and Management Features ... 11

Java VM Instrumentation .. 11
Monitoring and ManagementAPI ...12
Monitoring and Management Tools ..12
Java Management Extensions (JMX) Technology ..13

Platform MXBeans ...14
Platform MBean Server ..15

2 Monitoring andManagement Using JMX Technology ..17
Setting System Properties ..17
Enabling the Out-of-the-Box Management ..18

Local Monitoring and Management ..18
Remote Monitoring and Management ..19

Using Password andAccess Files ..24
Password Files ...24
Access Files ..25

Out-of-the-Box Monitoring and Management Properties ...26
Configuration Errors ..28

Connecting to the JMXAgent Programmatically ...29
Setting up Monitoring and Management Programmatically ..29

Mimicking Out-of-the-Box Management Using the JMX RemoteAPI ..30
Example of Mimicking Out-of-the-Box Management ..31

3 Using JConsole ...37
Starting JConsole ..37

3

Command Syntax ...37
Connecting to a JMXAgent ...39

Presenting the JConsole Tabs ..43
Viewing Overview Information ..44
Monitoring Memory Consumption ...45
Monitoring Thread Use ...48
Monitoring Class Loading ...50
Viewing VM Information ..51
Monitoring and Managing MBeans ...53
Creating Custom Tabs ..63

4 Using the PlatformMBean Server and PlatformMXBeans ..65
Using the Platform MBean Server ..65
Accessing Platform MXBeans ...65

Accessing Platform MXBeans via the ManagementFactoryClass ..66
Accessing Platform MXBeans via an MXBean Proxy ..66
Accessing Platform MXBeans via the MBeanServerConnectionClass ..67

Using Sun Microsystems’ Platform Extension ..67
Accessing MXBeanAttributes Directly ..67
Accessing MXBeanAttributes via MBeanServerConnection ...68

Monitoring Thread Contention and CPU Time ...69
Managing the Operating System ..69
Logging Management ..70
Detecting Low Memory ...70

Memory Thresholds ...71
Polling ..72
Threshold Notifications ...73

5 SNMPMonitoring andManagement ..75
Enabling the SNMPAgent ...75

Access Control List File ..75
� To Enable the SNMPAgent in a Single-user Environment ..76
� To Enable the SNMPAgent in a Multiple-user Environment ...76

SNMPMonitoring and Management Properties ...77
Configuration Errors ..78

Contents

Java SEMonitoring andManagement Guide • October 20064

A Additional Security Information ForMicrosoft Windows ..79
How to Secure a Password File on Microsoft Windows Systems ..79

� To Secure a Password File on Windows XPProfessional Edition ...79
� To Secure a Password File on Windows XPHome Edition ..86

Contents

5

6

Preface

The Java Platform, Standard Edition (Java SE platform) 6 features utilities that allow you to monitor
and manage the performance of a Java Virtual Machine (Java VM) and the Java applications that are
running in it. The Java SE Monitoring and Management Guide describes those monitoring and
management utilities.

WhoShouldUse This Book
The Java SE Monitoring and Management Guide is intended for experienced users of the Java
language, such as systems administrators and software developers, for whom the performance of the
Java platform and their applications is of vital importance.

BeforeYouReadThis Book
It is recommended that users are familiar with several other features of the Java SE platform. The
following documentation might be of use.

� Java Management Extensions (JMX) Technology
� Java HotSpot Technology
� Java Virtual Machine Technology
� Performance Documentation for the Java HotSpot VM

HowThis Book IsOrganized
This book covers the following topics.

� Chapter 1 introduces the monitoring and management utilities provides with the Java SE
platform.

� Chapter 2 describes how to configure your platform to allow monitoring and management using
the JMXAPI.

� Chapter 3 introduces the JConsole graphical user interface.
� Chapter 4 presents the MBeans that are provided with the Java SE platform for monitoring and

management purposes.

7

http://java.sun.com/javase/6/docs/technotes/guides/jmx/index.html
http://java.sun.com/javase/technologies/hotspot.jsp
http://java.sun.com/javase/6/docs/technotes/guides/vm/index.html
http://java.sun.com/docs/hotspot/

� Chapter 5 explains how to perform monitoring and management using the Simple Network
Management Protocol (SNMP).

� AppendixAprovides security configuration information specific to Windows platforms.

Related Third-PartyWebSite References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this document.
Sun does not endorse and is not responsible or liable for any content, advertising, products, or other
materials that are available on or through such sites or resources. Sun will not be responsible or liable
for any actual or alleged damage or loss caused or alleged to be caused by or in connection with use of
or reliance on any such content, goods, or services that are available on or through such sites or
resources.

Documentation, Support, andTraining
The Sun web site provides information about the following additional resources:

� Documentation (http://www.sun.com/documentation/)
� Support (http://www.sun.com/support/)
� Training (http://www.sun.com/training/)

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1TypographicConventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

Preface

Java SEMonitoring andManagement Guide • October 20068

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

TABLE P–1TypographicConventions (Continued)
Typeface Meaning Example

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in CommandExamples
The following table shows the default UNIX® system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

TABLE P–2Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface

9

10

Overview of Java SEMonitoring and
Management

This chapter introduces the features and utilities that provide monitoring and management services
to the Java Platform, Standard Edition (Java SE platform). The features introduced here will be
expanded upon in the following chapters of this guide.

KeyMonitoring andManagement Features
The Java SE platform includes significant monitoring and management features. These features fall
into four broad categories.

� Instrumentation for the Java Virtual Machine (Java VM).
� Monitoring and Management application programming interfaces (API).
� Monitoring and Management tools.
� The Java Management Extensions (JMX) technology.

These categories of monitoring and management features are introduced further in the next sections.

JavaVM Instrumentation
The Java VM is instrumented for monitoring and management, enabling built-in (or out-of-the-box)
management capabilities that can be accessed both remotely and locally. For more information, see
Chapter 2 and Chapter 5.

The Java VM includes a platform MBean server and platform MBeans for use by management
applications that conform to the JMX specification. These are implementations of the monitoring
and managementAPI described in the next section. Platform MXBeans and MBean servers are
introduced in “Platform MXBeans” on page 14 and “Platform MBean Server” on page 15.

Example code is provided in the JDK_HOME/demo/management directory, where JDK_HOME is the
directory in which the Java Development Kit (JDK) is installed.

1C H A P T E R 1

11

Monitoring andManagementAPI
The java.lang.management package provides the interface for monitoring and managing the Java
VM. ThisAPI provides access to the following types of information.

� Number of classes loaded and threads running.
� Java VM uptime, system properties, and VM input arguments.
� Thread state, thread contention statistics, and stack trace of live threads.
� Memory consumption.
� Garbage collection statistics.
� Low memory detection.
� On-demand deadlock detection.
� Operating system information.

In addition to the java.lang.managementAPI, the java.util.logging.LoggingMXBeanAPI
provides allows you to perform monitoring and management of logging.

Monitoring andManagement Tools
The Java SE platform provides a graphical monitoring tool called JConsole. JConsole implements the
JMXAPI and enables you to monitor the performance of a Java VM and any instrumented
applications, by providing information to help you optimize performance. Introduced in the J2SE
platform 5.0, JConsole became an officially supported feature of the platform in the Java SE platform,
version 6.

Some of the enhancements that have been made to JConsole between these two releases of the Java
SE platform are as follows.

� JConsole Plug-in support, that allows you to build your own plug-ins to run with JConsole, for
example, to add a custom tab for accessing your applications’ MBeans.

� Dynamic attach capability, allowing you to connect JConsole to any application that supports the
AttachAPI, that was added to the Java SE platform, version 6.

� Enhanced user interface, that makes data more easily accessible.
� New Overview and VM Summary tabs, for a better presentation of general information about

your Java VM.
� The HotSpot Diagnostic MBean, which provides anAPI to request heap dump at runtime and

also change the setting of certain VM options.
� Improved presentation of MBeans, to make it easier to access your MBeans’ operations and

attributes.

JConsole is presented in full in Chapter 3.

Other command-line tools are also supplied with the Java SE platform. See the Monitoring Tools
section of the JDK Development Tools document for more information.

KeyMonitoring andManagement Features

Java SEMonitoring andManagement Guide • October 200612

http://java.sun.com/javase/6/docs/technotes/tools/index.html#monitor

JavaManagement Extensions (JMX) Technology
The Java SE platform, version 6 includes the JMX specification, version 1.4. The JMXAPI allows you
to instrument applications for monitoring and management.An RMI connector allows this
instrumentation to be remotely accessible, for example by JConsole.

For more information, see the JMX technology documentation for the Java SE platform.Avery brief
introduction to the main components of the JMXAPI is included in the next sections.

What areMBeans?
JMX technology MBeans are managed beans, namely Java objects that represent resources to be
managed.An MBean has a management interface consisting of the following.

� Named and typed attributes that can be read and written.
� Named and typed operations that can be invoked.
� Typed notifications that can be emitted by the MBean.

For example, an MBean representing an application’s configuration could have attributes
representing different configuration parameters, such as a cache size. Reading the CacheSize
attribute would return the current size of the cache. Writing CacheSizewould update the size of the
cache, potentially changing the behavior of the running application.An operation such as save could
store the current configuration persistently. The MBean could send a notification such as
ConfigurationChangedNotificationwhen the configuration changes.

MBeans can be standard or dynamic. Standard MBeans are Java objects that conform to design
patterns derived from the JavaBeans component model. Dynamic MBeans define their management
interface at runtime. More recently, an additional type of MBean called an MXBean has also been
added to the Java platform.

� A standard MBean exposes the resource to be managed directly through its attributes and
operations.Attributes are exposed through "getter" and "setter" methods. Operations are the
other methods of the class that are available to managers.All these methods are defined statically
in the MBean interface and are visible to a JMX agent through introspection. This is the most
straightforward way of making a new resource manageable.

� Adynamic MBean is an MBean that defines its management interface at runtime. For example, a
configuration MBean could determine the names and types of the attributes it exposes by parsing
an XMLfile.

� An MXBean is a new type of MBean that provides a simple way to code an MBean that only
references a predefined set of types. In this way, you can be sure that your MBean will be usable by
any client, including remote clients, without any requirement that the client have access to
model-specific classes representing the types of your MBeans. The platform MBeans introduced
below are all MXBeans.

KeyMonitoring andManagement Features

Chapter 1 • Overview of Java SEMonitoring andManagement 13

http://java.sun.com/javase/6/docs/technotes/guides/jmx/

MBeanServer
To be useful, an MBean must be registered in an MBean server.An MBean Server is a repository of
MBeans. Each MBean is registered with a unique name within the MBean server. Usually the only
access to the MBeans is through the MBean server. In other words, code does not access an MBean
directly, but rather accesses the MBean by name through the MBean server.

The Java SE platform includes a built-in platform MBean server. For more information, see
Chapter 4.

Creating andRegisteringMBeans
There are two ways to create an MBean. One is to construct a Java object that will be the MBean, then
use the registerMBeanmethod to register it in the MBean Server. The other is to create and register
the MBean in a single operation using one of the createMBeanmethods.

The registerMBeanmethod is simpler for local use, but cannot be used remotely. The createMBean
method can be used remotely, but sometimes requires attention to class loading issues.An MBean
can perform actions when it is registered in or unregistered from an MBean Server if it implements
the MBeanRegistration interface.

InstrumentingApplications
General instructions on how to instrument your applications for management by the JMXAPI is
beyond the scope of this document. See the documentation for the Java Management Extensions
(JMX) Technology for information.

PlatformMXBeans
Aplatform MXBean is an MBean for monitoring and managing the Java VM and other components
of the Java Runtime Environment (JRE). Each MXBean encapsulates a part of VM functionality such
as the class loading system, just-in-time (JIT) compilation system, garbage collector, and so on.

Table 1–1 lists all the platform MXBeans and the aspect of the VM that they manage. Each platform
MXBean has a unique javax.management.ObjectName for registration in the platform MBean
server.A Java VM may have zero, one, or more than one instance of each MXBean, depending on its
function, as shown in the table.

TABLE 1–1PlatformMXBeans

Interface Part of VMManaged Object Name Instances per VM

ClassLoadingMXBean Class loading system java.lang:type=

ClassLoading

One

PlatformMXBeans

Java SEMonitoring andManagement Guide • October 200614

http://java.sun.com/javase/6/docs/technotes/guides/jmx/
http://java.sun.com/javase/6/docs/technotes/guides/jmx/

TABLE 1–1PlatformMXBeans (Continued)
Interface Part of VMManaged Object Name Instances per VM

CompilationMXBean Compilation system java.lang:type=

Compilation

Zero or one

GarbageCollectorMXBean Garbage collector java.lang:type=

GarbageCollector,

name=collectorName

One or more

LoggingMXBean Logging system java.util.logging:type

=Logging

One

MemoryManagerMXBean

(sub-interface of
GarbageCollectorMXBean)

Memory pool java.lang:

typeMemoryManager,

name=managerName

One or more

MemoryPoolMXBean Memory java.lang: type=

MemoryPool,

name=poolName

One or more

MemoryMXBean Memory system java.lang:type=

Memory

One

OperatingSystemMXBean Underlying operating
system

java.lang:type=

OperatingSystem

One

RuntimeMXBean Runtime system java.lang:type=

Runtime

One

ThreadMXBean Thread system java.lang:type=

Threading

One

See the package description in theAPI reference for the java.lang.management package for details of
the platform MXBeans (apart from LoggingMXBean). See theAPI reference for java.util.logging for
details of the LoggingMXBean.

PlatformMBeanServer
The platform MBean Server can be shared by different managed components running within the
same Java VM.You can access the platform MBean Server with the method
ManagementFactory.getPlatformMBeanServer(). The first call to this method, creates the platform
MBean server and registers the platform MXBeans using their unique object names. Subsequently, it
returns the initially created platform MBeanServer instance.

MXBeans that are created and destroyed dynamically (for example, memory pools and managers)
will automatically be registered and unregistered in the platform MBean server. If the system
property javax.management.builder.initial is set, the platform MBean server will be created by
the specified MBeanServerBuilder.

PlatformMBean Server

Chapter 1 • Overview of Java SEMonitoring andManagement 15

http://java.sun.com/javase/6/docs/api/java/lang/management/package-summary.html
http://java.sun.com/javase/6/docs/api/java/util/logging/package-summary.html

You can use the platform MBean server to register other MBeans besides the platform MXBeans.
This enables all MBeans to be published through the same MBean server and makes network
publishing and discovery easier.

PlatformMBean Server

Java SEMonitoring andManagement Guide • October 200616

Monitoring andManagement Using JMX
Technology

The Java virtual machine (Java VM) has built-in instrumentation that enables you to monitor and
manage it using the Java Management Extensions (JMX) technology. These built-in management
utilities are often referred to as out-of-the-box management tools for the Java VM.You can also
monitor any appropriately instrumented applications using the JMXAPI.

Setting SystemProperties
To enable and configure the out-of-the-box JMX agent so that it can monitor and manage the Java
VM, you must set certain system properties when you start the Java VM.You set a system property
on the command-line as follows.

java -Dproperty=value ...

You can set any number of system properties in this way. If you do not specify a value for a
management property, then the property is set with its default value. The full set of out-of-the-box
management properties is described in Table 2–1 at the end of this chapter. You can also set system
properties in a configuration file, as described in “Out-of-the-Box Monitoring and Management
Properties” on page 26.

Note –To run the Java VM from the command line, you must add JRE_HOME/bin to your path,
where JRE_HOME is the directory containing the Java Runtime Environment (JRE)
implementation.Alternatively, you can enter the full path when you type the command.

The following documents describe the syntax and the full set of command-line options supported by
the Java HotSpot VMs.

� Java application launcher for Microsoft Windows
� Java application launcher for Solaris Operating Environment
� Java application launcher for Linux

2C H A P T E R 2

17

http://java.sun.com/javase/6/docs/technotes/tools/windows/java.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/java.html
http://java.sun.com/javase/6/docs/technotes/tools/linux/java.html

Enabling theOut-of-the-BoxManagement
To monitor a Java platform using the JMXAPI, you must do the following.

1. Enable the JMX agent (another name for the platform MBean server) when you start the Java
VM.You can enable the JMX agent for:
� Local monitoring, for a client management application running on the local system.
� Remote monitoring, for a client management application running on a remote system.

2. Monitor the Java VM with a tool that complies to the JMX specification, such as JConsole. See
Chapter 3 for more information about Console.

These steps are described in the next sections.

LocalMonitoring andManagement
Under previous releases of the Java SE platform, to allow the JMX client access to a local Java VM,
you had to set the following system property when you started the Java VM or Java application.

com.sun.management.jmxremote

Setting this property registered the Java VM platform’s MBeans and published the Remote Method
Invocation (RMI) connector via a private interface to allow JMX client applications to monitor a
local Java platform, that is, a Java VM running on the same machine as the JMX client.

In the Java SE 6 platform, it is no longer necessary to set this system property.Any application that is
started on the Java SE 6 platform will support theAttachAPI, and so will automatically be made
available for local monitoring and management when needed.

For example, previously, to enable the JMX agent for the Java SE sample application Notepad, you
would have to run the following commands.

% cd JDK_HOME/demo/jfc/Notepad
% java -Dcom.sun.management.jmxremote -jar Notepad.jar

In the above command, JDK_HOME is the directory in which the Java Development Kit (JDK) is
installed. In the Java SE 6 platform, you would simply have to run the following command to start
Notepad.

% java -jar Notepad.jar

Once Notepad has been started, a JMX client using theAttachAPI can then enable the
out-of-the-box management agent to monitor and manage the Notepad application.

Enabling theOut-of-the-BoxManagement

Java SEMonitoring andManagement Guide • October 200618

Note –On Windows platforms, for security reasons, local monitoring and management is only
supported if your default temporary directory is on a file system that allows the setting of
permissions on files and directories (for example, on a New Technology File System (NTFS) file
system). It is not supported on a FileAllocation Table (FAT) file system, which provides insufficient
access controls.

LocalMonitoring andManagementUsing JConsole
Local monitoring with JConsole is useful for development and creating prototypes. Using JConsole
locally is not recommended for production environments, because JConsole itself consumes
significant system resources. Rather, you should use JConsole on a remote system to isolate it from
the platform being monitored.

However, if you do wish to perform local monitoring using JConsole, you start the tool by typing
jconsole in a command shell. When you start jconsolewithout any arguments, it will
automatically detect all local Java applications, and display a dialog box that enables you to select the
application you want to monitor. Both JConsole and the application must by executed by the same
user, since the monitoring and monitoring system uses the operating system’s file permissions.

Note –To run JConsole from the command line, you must add JDK_HOME/bin to your path.
Alternatively, you can enter the full path when you type the command.

For more information, see Chapter 3.

RemoteMonitoring andManagement
To enable monitoring and management from remote systems, you must set the following system
property when you start the Java VM.

com.sun.management.jmxremote.port=portNum

In the property above, portNum is the port number through which you want to enable JMX RMI
connections. Be sure to specify an unused port number. In addition to publishing an RMI connector
for local access, setting this property publishes an additional RMI connector in a private read-only
registry at the specified port using a well known name, "jmxrmi".

Note –You must set the above system property in addition to any properties you might set for
security, as described in “Using PasswordAuthentication ” on page 20 and the sections that follow
it.

Remote monitoring and management requires security, to ensure that unauthorized persons cannot
control or monitor your application. Password authentication over the Secure Sockets Layer (SSL)
and Transport Layer Security (TLS) is enabled by default. You can disable password authentication
and SSL separately, as described in the next sections.

Enabling theOut-of-the-BoxManagement

Chapter 2 • Monitoring andManagement Using JMX Technology 19

After you have enabled the JMX agent for remote use, you can monitor your application using
JConsole, as described in “Remote Monitoring with JConsole” on page 23. How to connect to the
management agent programmatically is described in “Connecting to the JMXAgent
Programmatically” on page 29.

UsingPasswordAuthentication
By default, when you enable the JMX agent for remote monitoring, it uses password authentication.
However, the way you set it up depends on whether you are in a single-user environment or a
multiple-user environment.

Since passwords are stored in clear-text in the password file, it is not advisable to use your regular
user name and password for monitoring. Instead, use the user names specified in the password file
such as monitorRole and controlRole. For more information, see “Using Password andAccess
Files” on page 24.

� ToSet upa Single-User Environment
You set up the password file in the JRE_HOME/lib/management directory as follows.

Copy the password template file, jmxremote.password.template, to jmxremote.password.

Set file permissions so that only the owner can read andwrite the password file.

Addpasswords for roles such as monitorRole and controlRole.

� ToSet upaMultiple-User Environment
You set up the password file in the JRE_HOME/lib/management directory as follows.

Copy the password template file, jmxremote.password.template, to your homedirectory and
rename it to jmxremote.password.

Set file permissions so that only you can read andwrite the password file.

Addpasswords for the roles such as monitorRole and controlRole.

Set the following systempropertywhen you start the Java VM.

com.sun.management.jmxremote.password.file=pwFilePath

In the above property, pwFilePath is the path to the password file.

1

2

3

1

2

3

4

Enabling theOut-of-the-BoxManagement

Java SEMonitoring andManagement Guide • October 200620

Caution –Apotential security issue has been identified with password authentication for remote
connectors when the client obtains the remote connector from an insecure RMI registry (the
default). If an attacker starts a bogus RMI registry on the target server before the legitimate registry is
started, then the attacker can steal clients’ passwords. This scenario includes the case where you
launch a Java VM with remote management enabled, using the system property
com.sun.management.jmxremote.port=portNum, even when SSL is enabled.Although such attacks
are likely to be noticed, it is nevertheless a vulnerability.

To avoid this problem, use SSL client certificates for authentication instead of passwords, or ensure
that the client obtains the remote connector object securely, for example through a secure LDAP
server or a file in a shared secure filesystem.

DisablingPasswordAuthentication
Password authentication for remote monitoring is enabled by default. To disable it, set the following
system property when you start the Java VM.

com.sun.management.jmxremote.authenticate=false

Caution –This configuration is insecure.Any remote user who knows (or guesses) your JMX port
number and host name will be able to monitor and control your Java application and platform.
While it may be acceptable for development, it is not recommended for production systems.

When you disable password authentication, you can also disable SSL, as described in “Disabling
Security” on page 23. You may also want to disable passwords, but use SSL client authentication, as
described in “Enabling SSLClientAuthentication” on page 22.

Using SSL
SSL is enabled by default when you enable remote monitoring and management. To use SSL, you
need to set up a digital certificate on the system where the JMX agent (the MBean server) is running
and then configure SSLproperly. You use the command-line utility keytool to work with certificates.
The general procedure is as follows.

� ToSet upSSL

If you donot already have a key pair and certificate set up on the server:

� Generate a key pair with the keytool -genkey command.
� Request a signed certificate from a certificate authority (CA) with the keytool -certreq

command.
� Import the certificate into your keystore with the keytool -import command. See Importing

Certificates in the keytool documentation.

1

Enabling theOut-of-the-BoxManagement

Chapter 2 • Monitoring andManagement Using JMX Technology 21

http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html#ImportCertificate
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html#ImportCertificate

For more information and examples, see keytool - Key and Certificate Management Tool (Solaris
and Linux) or (Windows platforms).

Configure SSLon the server system.

Afull explanation of configuring and customizing SSL is beyond the scope of this document, but you
generally need to set the system properties described in the list below.
SystemProperty Description

javax.net.ssl.keyStore Keystore location.

javax.net.ssl.keyStoreType Default keystore type.

javax.net.ssl.keyStorePassword Default keystore password.

javax.net.ssl.trustStore Truststore location.

javax.net.ssl.trustStoreType Default truststore type.

javax.net.ssl.trustStorePassword Default truststore password.

For more information about setting system properties, see “Setting System Properties” on page 17
above, or consult the following documents.

� keytool - Key and Certificate Management Tool (Solaris and Linux platforms)
� keytool - Key and Certificate Management Tool (Windows platforms)
� The section Customizing the Default Key and Trust Stores, Store Types, and Store Passwordsin

the JSSE Guide.

EnablingRMIRegistryAuthentication
When setting up connections for monitoring remote applications, you can optionally bind the RMI
connector stub to an RMI registry that is protected by SSL. This allows clients with the appropriate
SSL certificates to get the connector stub that is registered in the RMI registry. To protect the RMI
registry using SSL, you must set the following system property.

com.sun.management.jmxremote.registry.ssl=true

When this property is set to true, an RMI registry protected by SSLwill be created and configured by
the out-of-the-box management agent when the Java VM is started. The default value of this
property is false. If this property is set to true, in order to have full security then SSL client
authentication must also be enabled, as described in the next section.

Enabling SSLClientAuthentication
To enable SSL client authentication, set the following system property when you start the Java VM.

com.sun.management.jmxremote.ssl.need.client.auth=true

2

Enabling theOut-of-the-BoxManagement

Java SEMonitoring andManagement Guide • October 200622

http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

SSLmust be enabled (the default), to use client SSL authentication. This configuration requires the
client system to have a valid digital certificate. You must install a certificate and configure SSLon the
client system, as described in “Using SSL” on page 21.As stated in the previous section, if RMI
registry SSLprotection is enabled, then client SSL authentication must be set to true.

Disabling SSL
To disable SSLwhen monitoring remotely, you must set the following system property when you
start the Java VM.

com.sun.management.jmxremote.ssl=false

Password authentication will still be required unless you disable it, as specified in “Disabling
PasswordAuthentication” on page 21.

Disabling Security
To disable both password authentication and SSL (namely to disable all security), you should set the
following system properties when you start the Java VM.

com.sun.management.jmxremote.authenticate=false

com.sun.management.jmxremote.ssl=false

Caution –This configuration is insecure: any remote user who knows (or guesses) your port number
and host name will be able to monitor and control your Java applications and platform.
Furthermore, possible harm is not limited to the operations you define in your MBeans.Aremote
client could create a javax.management.loading.MLetMBean and use it to create new MBeans
from arbitrary URLs, at least if there is no security manager. In other words, a rogue remote client
could make your Java application execute arbitrary code.

Consequently, while disabling security might be acceptable for development, it is strongly
recommended that you do not disable security for production systems.

RemoteMonitoringwith JConsole
You can remotely monitor an application using JConsole, with or without security enabled.

RemoteMonitoringwith JConsolewith SSLDisabled

To monitor a remote application with SSLdisabled, you would start JConsole with the following
command.

% jconsole hostName:portNum

Enabling theOut-of-the-BoxManagement

Chapter 2 • Monitoring andManagement Using JMX Technology 23

You can also omit the host name and port number, and enter them in the dialog box that JConsole
provides.

RemoteMonitoringwith JConsolewith SSLEnabled

To monitor a remote application with SSL enabled, you need to set up the truststore on the system
where JConsole is running and configure SSLproperly. For example, you can create a keystore as
described in the JSSE Guide and start your application (called Server in this example) with the
following commands.

% java -Djavax.net.ssl.keyStore=keystore \

-Djavax.net.ssl.keyStorePassword=password Server

If you created the keystore and started Server as shown above, then you would have to start JConsole
as follows.

% jconsole -J-Djavax.net.ssl.trustStore=truststore \

-J-Djavax.net.ssl.trustStorePassword=trustword

The above configuration authenticates the server only. If SSL client authentication is set up, you will
need to provide a similar keystore for JConsole’s keys, and an appropriate truststore for the
application.

See Customizing the Default Key and Trust Stores, Store Types, and Store Passwords in the JSSE
Guide for information.

For more information on using JConsole, see Chapter 3.

UsingPassword andAccess Files
The password and access files control security for remote monitoring and management. These files
are located by default in JRE_HOME/lib/management and are in the standard Java properties file
format. For more information on the format, see theAPI reference for the java.util.Properties
package.

Password Files
The password file defines the different roles and their passwords. The access control file
(jmxremote.access by default) defines the permitted access for each role. To be functional, a role
must have an entry in both the password and the access files.

The JRE implementation contains a password file template named jmxremote.password.template.
Copy this file to JRE_HOME/lib/management/jmxremote.password or to your home directory,
and add the passwords for the roles defined in the access file.

Using Password andAccess Files

Java SEMonitoring andManagement Guide • October 200624

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore
http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CustomizingStores

You must ensure that only the owner has read and write permissions on this file, since it contains the
passwords in clear text. For security reasons, the system checks that the file is only readable by the
owner and exits with an error if it is not. Thus in a multiple-user environment, you should store the
password file in private location such as your home directory.

Property names are roles, and the associated value is the role’s password. For example, the following
are sample entries in the password file.

EXAMPLE 2–1AnExample Password File

The "monitorRole" role has password "QED".

The "controlRole" role has password "R&D".

monitorRole QED

controlRole R&D

On Solaris and Linux systems, you can set the file permissions for the password file by running the
following command.

chmod 600 jmxremote.password

For instructions on how to set file permissions on Windows platforms, see AppendixA.

Access Files
By default, the access file is named jmxremote.access. Property names are identities from the same
space as the password file. The associated value must be either readonly or readwrite.

The access file defines roles and their access levels. By default, the access file defines the two following
primary roles.

� monitorRole, which grants read-only access for monitoring.
� controlRole, which grants read-write access for monitoring and management.

An access control entry consists of a role name and an associated access level. The role name cannot
contain spaces or tabs and must correspond to an entry in the password file. The access level can be
either one of the following.

� readonly, which grants access to read an MBean’s attributes. For monitoring, this means that a
remote client in this role can read measurements but cannot perform any action that changes the
environment of the running program. The remote client can also listen to MBean notifications.

� readwrite, which grants access to read and write an MBean’s attributes, to invoke operations on
them, and to create or remove them. This access should be granted to only trusted clients, since
they can potentially interfere with the operation of an application.

Using Password andAccess Files

Chapter 2 • Monitoring andManagement Using JMX Technology 25

Arole should have only one entry in the access file. If a role has no entry, it has no access. If a role has
multiple entries, then the last entry takes precedence. Typical predefined roles in the access file
resemble the following.

EXAMPLE 2–2AnExampleAccess File

The "monitorRole" role has readonly access.

The "controlRole" role has readwrite access.

monitorRole readonly

controlRole readwrite

Out-of-the-BoxMonitoring andManagement Properties
You can set out-of-the-box monitoring and management properties in a configuration file or on the
command line. Properties specified on the command line override properties in a configuration file.
The default location for the configuration file is
JRE_HOME/lib/management/management.properties. The Java VM reads this file if either of the
command-line properties com.sun.management.jmxremote or
com.sun.management.jmxremote.port are set. Management via the Simple Network Management
Protocol (SNMP) uses the same configuration file. For more information about SNMPmonitoring,
see Chapter 5.

You can specify a different location for the configuration file with the following command-line
option.

com.sun.management.config.file=ConfigFilePath

In the property above, ConfigFilePath is the path to the configuration file.

Table 2–1 describes all the out-of-the-box monitoring and management properties.

TABLE 2–1Out-of-the-BoxMonitoring andManagement Properties

Property Description Values

com.sun.management.jmxremote Enables the JMX remote agent and
local monitoring via a JMX
connector published on a private
interface used by JConsole and any
other local JMX clients that use the
AttachAPI. JConsole can use this
connector if it is started by the
same user as the user that started
the agent. No password or access
files are checked for requests
coming via this connector.

true / false. Default is true.

Out-of-the-BoxMonitoring andManagement Properties

Java SEMonitoring andManagement Guide • October 200626

TABLE 2–1Out-of-the-BoxMonitoring andManagement Properties (Continued)
Property Description Values

com.sun.management.jmxremote.

port

Enables the JMX remote agent and
creates a remote JMX connector to
listen through the specified port. By
default, the SSL, password, and
access file properties are used for
this connector. It also enables local
monitoring as described for the
com.sun.management.jmxremote

property.

Port number. No default.

com.sun.management.jmxremote.

registry.ssl

Binds the RMI connector stub to an
RMI registry protected by SSL.

true / false. Default is false.

com.sun.management.jmxremote.

ssl

Enables secure monitoring via SSL.
If false, then SSL is not used.

true / false. Default is true.

com.sun.management.jmxremote.

ssl.enabled.protocols

Acomma-delimited list of SSL/TLS
protocol versions to enable. Used
in conjunction with
com.sun.management.jmxremote.ssl.

Default SSL/TLS protocol version.

com.sun.management.jmxremote.

ssl.enabled.cipher.suites

Acomma-delimited list of SSL/TLS
cipher suites to enable. Used in
conjunction with
com.sun.management.jmxremote.ssl.

Default SSL/TLS cipher suites.

com.sun.management.jmxremote.

ssl.need.client.auth

If this property is true and the
property
com.sun.management.jmxremote.ssl

is also true, then client
authentication will be performed.

true / false. Default is true.

com.sun.management.jmxremote.

authenticate

If this property is false then JMX
does not use passwords or access
files: all users are allowed all access.

true / false. Default is true.

com.sun.management.jmxremote.

password.file

Specifies location for password file.
If
com.sun.management.jmxremote.authenticate

is false, then this property and the
password and access files are
ignored. Otherwise, the password
file must exist and be in the valid
format. If the password file is empty
or nonexistent, then no access is
allowed.

JRE_HOME/lib/management/
jmxremote.password

Out-of-the-BoxMonitoring andManagement Properties

Chapter 2 • Monitoring andManagement Using JMX Technology 27

TABLE 2–1Out-of-the-BoxMonitoring andManagement Properties (Continued)
Property Description Values

com.sun.management.jmxremote.

access.file

Specifies location for the access file.
If
com.sun.management.jmxremote.authenticate

is false, then this property and the
password and access files are
ignored. Otherwise, the access file
must exist and be in the valid
format. If the access file is empty or
nonexistent, then no access is
allowed.

JRE_HOME/lib/management/
jmxremote.access

com.sun.management.jmxremote.

login.config

Specifies the name of a Java
Authentication andAuthorization
Service (JAAS) login configuration
entry to use when the JMX agent
authenticates users. When using
this property to override the default
login configuration, the named
configuration entry must be in a file
that is loaded by JAAS. In addition,
the login modules specified in the
configuration should use the name
and password callbacks to acquire
the user’s credentials. For more
information, see theAPI
documentation for
javax.security.auth.callback.NameCallback

and
javax.security.auth.callback.PasswordCallback.

Default login configuration is a
file-based password authentication.

Configuration Errors
If any errors occur during start up of the MBean server, the RMI registry, or the connector, the Java
VM will throw an exception and exit. Configuration errors include the following.

� Failure to bind to the port number.
� Invalid password file.
� Invalid access file.
� Password file is readable by users other than the owner.

If your application runs a security manager, then additional permissions are required in the security
permissions file.

Out-of-the-BoxMonitoring andManagement Properties

Java SEMonitoring andManagement Guide • October 200628

Connecting to the JMXAgent Programmatically
Once you have enabled the JMX agent, a client can use the following URL to access the monitoring
service.

service:jmx:rmi:///jndi/rmi://hostName:portNum/jmxrmi

Aclient can create a connector for the agent by instantiating a
javax.management.remote.JMXServiceURL object using the URL, and then creating a connection
using the JMXConnectorFactory.connectmethod, shown in Example 2–3.

EXAMPLE 2–3Creating aConnectionUsing JMXConnectorFactory.connect

MXServiceURL u = new JMXServiceURL(

"service:jmx:rmi:///jndi/rmi://" + hostName + ":" + portNum + "/jmxrmi");

JMXConnector c = JMXConnectorFactory.connect(u);

SettingupMonitoring andManagement
Programmatically
As stated previously, in the Java SE platform version 6, you can create a JMX client that uses the
AttachAPI to enable out-of-the-box monitoring and management of any applications that are
started on the Java SE 6 platform, without having to configure the applications for monitoring when
you launch them. TheAttachAPI provides a way for tools to attach to and start agents in the target
application. Once an agent is running, JMX clients (and other tools) are able to obtain the JMX
connector address for that agent via a property list that is maintained by the Java VM on behalf of the
agents. The properties in the list are accessible from tools that use theAttachAPI. So, if an agent is
started in an application, and if the agent creates a property to represent a piece of configuration
information, then that configuration information is available to tools that attach to the application.

The JMX agent creates a property with the address of the local JMX connector server. This allows
JMX tools to attach to and get the connector address of an agent, if it is running.

Example 2–4 shows code that could be used in a JMX tool to attach to a target VM, get the connector
address of the JMX agent and connect to it.

EXAMPLE 2–4Attaching a JMX tool to a connector and getting the agent’s address

static final String CONNECTOR_ADDRESS =

"com.sun.management.jmxremote.localConnectorAddress";

// attach to the target application

VirtualMachine vm = VirtualMachine.attach(id);

// get the connector address

Connecting to the JMXAgent Programmatically

Chapter 2 • Monitoring andManagement Using JMX Technology 29

http://java.sun.com/javase/6/docs/technotes/guides/attach/index.html

EXAMPLE 2–4Attaching a JMX tool to a connector and getting the agent’s address (Continued)

String connectorAddress =

vm.getAgentProperties().getProperty(CONNECTOR_ADDRESS);

// no connector address, so we start the JMX agent

if (connectorAddress == null) {

String agent = vm.getSystemProperties().getProperty("java.home") +

File.separator + "lib" + File.separator + "management-agent.jar";

vm.loadAgent(agent);

// agent is started, get the connector address

connectorAddress =

vm.getAgentProperties().getProperty(CONNECTOR_ADDRESS);

}

// establish connection to connector server

JMXServiceURL url = new JMXServiceURL(connectorAddress);

JMXConnector = JMXConnectorFactory.connect(url);

Example 2–4 uses the com.sun.tools.attach.VirtualMachine class’s attach()method to attach
to a given Java VM so that it can read the properties that the target Java VM maintains on behalf of
any agents running in it. If an agent is already running, then the VirtualMachine class’s
getAgentProperties()method is called to obtain the agent’s address. The getAgentProperties()
method returns a string property for the local connector address
com.sun.management.jmxremote.localConnectorAddress, that you can use to connect to the local
JMX agent.

If no agent is running already, then one is loaded by the VirtualMachine from
JRE_HOME/lib/management-agent.jar, and its connector address is obtained by
getAgentProperties().

Aconnection to the agent is then established by calling JMXConnectorFactory.connect on a JMX
service URL that has been constructed from this connector address.

MimickingOut-of-the-BoxManagementUsing the JMX
RemoteAPI

As explained above, remote access to the out-of-the-box management agent is protected by
authentication and authorization, and by SSL encryption, and all configuration is performed by
setting system properties or by defining a management.properties file. In most cases, using the
out-of-the-box management agent and configuring it through the management.properties file is
more than sufficient to provide secure management of remote Java VMs. However, in some cases
greater levels of security are required and in other cases certain system configurations do not allow
the use of a management.properties file. Such cases might involve exporting the RMI server’s

MimickingOut-of-the-BoxManagement Using the JMX RemoteAPI

Java SEMonitoring andManagement Guide • October 200630

remote objects over a certain port to allow passage through a firewall, or exporting the RMI server’s
remote objects using a specific network interface in multi-homed systems. For such cases, the
behavior of the out-of-the-box management agent can be mimicked by using the JMX RemoteAPI
directly to create, configure and deploy the management agent programmatically.

Example ofMimickingOut-of-the-BoxManagement
This section provides an example of how to implement a JMX agent that identically mimics an
out-of-the-box management agent. In exactly the same way as the out-of-the-box management
agent, the agent created in Example 2–5 will run on port 3000, will have a password file named
password.properties, an access file named access.properties and it will implement the default
configuration for SSL/TLS-based RMI Socket Factories, requiring server authentication only. This
example assumes a keystore has already been created, as described in “Using SSL” on page 21.
Information about how to set up the SSL configuration can be found in the JSSE Reference Guide.

To enable monitoring and management on an application named com.example.MyApp using the
out-of-the-box JMX agent with the configuration described above, you would run
com.example.MyAppwith the following command.

% java -Dcom.sun.management.jmxremote.port=3000 \

-Dcom.sun.management.jmxremote.password.file=password.properties \

-Dcom.sun.management.jmxremote.access.file=access.properties \

-Djavax.net.ssl.keyStore=keystore \

-Djavax.net.ssl.keyStorePassword=password \

com.example.MyApp

Note –The com.sun.management.jmxremote.* properties could have been specified in a
management.properties file instead of passing them at the command line. In that case, the system
property -Dcom.sun.management.config.file=management.properties would be required to
specify the location of the management.properties file.

Example 2–5 shows the code you would need to write to create programmatically a JMX agent that
will allow exactly the same monitoring and management on com.example.MyApp as would be
possible using the command above.

EXAMPLE 2–5Mimicking anOut-of-the-Box JMXAgent Programmatically

package com.example;

import java.lang.management.*;

import java.rmi.registry.*;

import java.util.*;

import javax.management.*;

import javax.management.remote.*;

import javax.management.remote.rmi.*;

MimickingOut-of-the-BoxManagement Using the JMX RemoteAPI

Chapter 2 • Monitoring andManagement Using JMX Technology 31

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html#CreateKeystore

EXAMPLE 2–5Mimicking an Out-of-the-Box JMXAgent Programmatically (Continued)

import javax.rmi.ssl.*;

public class MyApp {

public static void main(String[] args) throws Exception {

// Ensure cryptographically strong random number generator used

// to choose the object number - see java.rmi.server.ObjID

//

System.setProperty("java.rmi.server.randomIDs", "true");

// Start an RMI registry on port 3000.

//

System.out.println("Create RMI registry on port 3000");

LocateRegistry.createRegistry(3000);

// Retrieve the PlatformMBeanServer.

//

System.out.println("Get the platform’s MBean server");

MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();

// Environment map.

//

System.out.println("Initialize the environment map");

HashMap<String,Object> env = new HashMap<String,Object>();

// Provide SSL-based RMI socket factories.

//

// The protocol and cipher suites to be enabled will be the ones

// defined by the default JSSE implementation and only server

// authentication will be required.

//

SslRMIClientSocketFactory csf = new SslRMIClientSocketFactory();

SslRMIServerSocketFactory ssf = new SslRMIServerSocketFactory();

env.put(RMIConnectorServer.RMI_CLIENT_SOCKET_FACTORY_ATTRIBUTE, csf);

env.put(RMIConnectorServer.RMI_SERVER_SOCKET_FACTORY_ATTRIBUTE, ssf);

// Provide the password file used by the connector server to

// perform user authentication. The password file is a properties

// based text file specifying username/password pairs.

//

env.put("jmx.remote.x.password.file", "password.properties");

// Provide the access level file used by the connector server to

// perform user authorization. The access level file is a properties

// based text file specifying username/access level pairs where

MimickingOut-of-the-BoxManagement Using the JMX RemoteAPI

Java SEMonitoring andManagement Guide • October 200632

EXAMPLE 2–5Mimicking an Out-of-the-Box JMXAgent Programmatically (Continued)

// access level is either "readonly" or "readwrite" access to the

// MBeanServer operations.

//

env.put("jmx.remote.x.access.file", "access.properties");

// Create an RMI connector server.

//

// As specified in the JMXServiceURL the RMIServer stub will be

// registered in the RMI registry running in the local host on

// port 3000 with the name "jmxrmi". This is the same name the

// out-of-the-box management agent uses to register the RMIServer

// stub too.

//

System.out.println("Create an RMI connector server");

JMXServiceURL url =

new JMXServiceURL("service:jmx:rmi:///jndi/rmi://:3000/jmxrmi");

JMXConnectorServer cs =

JMXConnectorServerFactory.newJMXConnectorServer(url, env, mbs);

// Start the RMI connector server.

//

System.out.println("Start the RMI connector server");

cs.start();

}

}

Start this application with the following command.

java -Djavax.net.ssl.keyStore=keystore \

-Djavax.net.ssl.keyStorePassword=password \

com.example.MyApp

The com.example.MyApp application will enable the JMX agent and will be able to be monitored and
managed in exactly the same way as if the Java platform’s out-of-the-box management agent had
been used. However, there is one slight but important difference between the RMI registry used by
the out-of-the-box management agent and the one used by a management agent that mimics it. The
RMI registry used by the out-of-the-box management agent is read-only, namely a single entry can be
bound to it and once bound this entry cannot be unbound. This is not true of the RMI registry
created in Example 2–5.

Furthermore, both RMI registries are insecure as they do not use SSL/TLS. The RMI registries should
be created using SSL/TLS-based RMI socket factories which require client authentication. This will
prevent a client from sending its credentials to a rogue RMI server and will also prevent the RMI
registry from giving access to the RMI server stub to a non-trusted client.

MimickingOut-of-the-BoxManagement Using the JMX RemoteAPI

Chapter 2 • Monitoring andManagement Using JMX Technology 33

RMI registries which implement SSL/TLS RMI socket factories can be created by adding the
following properties to your management.properties file.

com.sun.management.jmxremote.registry.ssl=true

com.sun.management.jmxremote.ssl.need.client.auth=true

Example 2–5 mimics the main behavior of the out-of-the-box JMX agent, but does not replicate all
the existing properties in the management.properties file. However, you could add other properties
by modifying com.example.MyApp appropriately.

MonitoringApplications througha Firewall
As stated above, the code in Example 2–5 can be used to monitor applications through a firewall,
which might not be possible if you use the out-of-the-box monitoring solution. The
com.sun.management.jmxremote.portmanagement property specifies the port where the RMI
Registry can be reached but the ports where the RMIServer and RMIConnection remote objects are
exported is chosen by the RMI stack. To export the remote objects (RMIServer and RMIConnection)
to a given port you need to create your own RMI connector server programmatically, as described in
Example 2–5. However, you must specify the JMXServiceURL as follows:

JMXServiceURL url = new JMXServiceURL("service:jmx:rmi://localhost:" +

port1 + "/jndi/rmi://localhost:" + port2 + "/jmxrmi");

In the URLabove, port1 is the port number on which the RMIServer and RMIConnection remote
objects are exported and port2 is the port number of the RMI Registry.

Using anAgent Class to Instrument anApplication
The Java SE platform provides services that allow Java programming language agents to instrument
programs running on the Java VM. Creating an instrumentation agent means you do not have to add
any new code to your application in order to allow it to be monitored. Instead of implementing
monitoring and management in your application’s static mainmethod you implement it in a
separate agent class, and start your application with the -javaagent option specified. See theAPI
reference documentation for the java.lang.instrument package for full details about how to create an
agent class to instrument your applications.

The following procedure shows how you can adapt the code of com.example.MyApp to make an agent
to instrument any other application for monitoring and management.

� Creating anAgent Class to Instrument anApplication

Create a com.example.MyAgent class.
Create a class called com.example.MyAgent, declaring a premainmethod rather than a mainmethod.
package com.example;

[...]

1

MimickingOut-of-the-BoxManagement Using the JMX RemoteAPI

Java SEMonitoring andManagement Guide • October 200634

http://java.sun.com/javase/6/docs/api/java/lang/instrument/package-summary.html

public class MyAgent {

public static void premain(String args) throws Exception {

[...]

The rest of the code for the com.example.MyAgent class can be exactly the same as the
com.example.MyApp class shown in Example 2–5.

Compile the com.example.MyAgent class.

Create amanifest file, MANIFEST.MF, with a Premain-Class entry.

An agent is deployed as a Java archive (JAR) file.An attribute in the JAR file manifest specifies the
agent class which will be loaded to start the agent. Create a file called MANIFEST.MF, containing the
following line.
Premain-Class: com.example.MyAgent

Create a JARfile, MyAgent.jar.

The JAR file should contain the following files.

� META-INF/MANIFEST.MF

� com/example/MyAgent.class

Start an application, specifying the agent to providemonitoring andmanagement services.

You can use com.example.MyAgent to instrument any application for monitoring and management.
This example uses the Notepad application.
% java -javaagent:MyAgent.jar -Djavax.net.ssl.keyStore=keystore \

-Djavax.net.ssl.keyStorePassword=password -jar Notepad.jar

The com.example.MyAgent agent is specified using the -javaagent option when you start Notepad.
Also, if your com.example.MyAgent application replicates the same code as the com.example.MyApp
application shown in Example 2–5, then you will need to provide the keystore and password

because the RMI connector server is protected by SSL.

2

3

4

5

MimickingOut-of-the-BoxManagement Using the JMX RemoteAPI

Chapter 2 • Monitoring andManagement Using JMX Technology 35

36

Using JConsole

The JConsole graphical user interface is a monitoring tool that complies to the Java Management
Extensions (JMX) specification. JConsole uses the extensive instrumentation of the Java Virtual
Machine (Java VM) to provide information about the performance and resource consumption of
applications running on the Java platform.

In the Java Platform, Standard Edition (Java SE platform) 6, JConsole has been updated to present
the look and feel of the Windows and GNOME desktops (other platforms will present the standard
Java graphical look and feel). The screen captures presented in this document were taken from an
instance of the interface running on Windows XP.

Starting JConsole
The jconsole executable can be found in JDK_HOME/bin, where JDK_HOME is the directory in
which the Java Development Kit (JDK) is installed. If this directory is in your system path, you can
start JConsole by simply typing jconsole in a command (shell) prompt. Otherwise, you have to type
the full path to the executable file.

CommandSyntax
You can use JConsole to monitor both local applications, namely those running on the same system
as JConsole, as well as remote applications, namely those running on other systems.

Note –Using JConsole to monitor a local application is useful for development and for creating
prototypes, but is not recommended for production environments, because JConsole itself consumes
significant system resources. Remote monitoring is recommended to isolate the JConsole application
from the platform being monitored.

For a complete reference on the syntax of the jconsole command, see the manual page for the
jconsole command: Java Monitoring and Management Console.

3C H A P T E R 3

37

http://java.sun.com/javase/6/docs/technotes/tools/share/jconsole.html

Settingup LocalMonitoring
You start JConsole by typing the following command at the command line.

% jconsole

When JConsole starts, you will be given a choice of all the Java applications that are running locally
that JConsole can connect to.

If you want to monitor a specific application, and you know that application’s process ID, then you
can also start JConsole so that it connects to that application. This application must be running with
the same user ID as JConsole. The command syntax to start JConsole for local monitoring of a
specific application is the following.

% jconsole processID

In the command above processID is the application’s process ID (PID). You can determine an
application’s PID in the following ways:

� On UNIX or Linux systems, you can use the ps command to find the PID of the java instance
that is running.

� On Windows systems, you can use the Task Manager to find the PID of java or javaw.
� You can also use the jps command-line utility to determine PIDs. See the manual page for the

Java Virtual Machine Process Status Tool.

For example, if you determined that the process ID of the Notepad application is 2956, then you
would start JConsole with the following command.

% jconsole 2956

Both JConsole and the application must by executed by the same user. The management and
monitoring system uses the operating system’s file permissions. If you do not specify a process ID,
JConsole will automatically detect all local Java applications, and display a dialog box that lets you
select which one you want to monitor (see “Connecting to a JMXAgent” on page 39).

For more information, see “Local Monitoring and Management” on page 18.

SettingupRemoteMonitoring
To start JConsole for remote monitoring, you use the following command syntax.

% jconsole hostName:portNum

In the command above, hostName is the name of the system running the application and portNum is
the port number you specified when you enabled the JMX agent when you started the Java VM. For
more information, see “Remote Monitoring and Management” on page 19.

If you do not specify a host name/port number combination, then JConsole will display a connection
dialog box (“Connecting to a JMXAgent” on page 39) to enable you to enter a host name and port
number.

Starting JConsole

Java SEMonitoring andManagement Guide • October 200638

http://java.sun.com/javase/6/docs/technotes/tools/share/jps.html

SettingupSecureRemoteMonitoring
You can also start JConsole so that monitoring will be performed over a connection that is secured
using Secure Sockets Layer (SSL). The command to start JConsole with a secure connection is given
in “Remote Monitoring with JConsole with SSLEnabled” on page 24 in Chapter 2.

Connecting to a JMXAgent
If you start JConsole with arguments specifying a JMX agent to connect to, it will automatically start
monitoring the specified Java VM.You can connect to a different host at any time by choosing
Connection | New Connection and entering the necessary information.

Otherwise, if you do not provide any arguments when you start JConsole, the first thing you see is the
connection dialog box. This dialog box has two options, allowing connections to either Local or
Remote processes.

DynamicAttach
Under previous releases of the Java SE platform, applications that you wanted to monitor with
JConsole needed to be started with the following option.

% -Dcom.sun.management.jmxremote

However, the version of JConsole provided with the Java SE 6 platform can attach to any application
that supports theAttachAPI. In other words, any application that is started in the Java SE 6 HotSpot
VM is detected automatically by JConsole, and does not need to be started using the above
command-line option.

Connecting JConsole to a Local Process
If you start JConsole without providing a specific JMX agent to connect to, you will see the following
dialog window.

Starting JConsole

Chapter 3 • Using JConsole 39

FIGURE 3–1Creating a Connection to a Local Process

The Local Process option lists any Java VMs running on the local system that were started with the
same user ID as JConsole, along with their process ID and their class and/or argument information.
To connect JConsole to your application, select the application you want to monitor, then click the
Connect button. The list of local processes includes applications running in the following types of
Java VM.

� Applications with themanagement agent enabled.These include applications on the Java SE 6
platform or on the J2SE 5.0 platform that were started with the
-Dcom.sun.management.jmxremote option or with the
-Dcom.sun.management.jmxremote.port option specified. In addition, the list also includes any
applications that were started on the Java SE 6 platform without any management properties but
which are later attached to by JConsole, which enables the management agent at runtime.

� Applications that are attachable, with themanagement agent disabled.An attachable
application supports loading the management agent at runtime.Attachable applications include
applications that are started on the Java SE 6 platform that support theAttachAPI.Applications
which support dynamic attach do not require the management agent to be started by specifying
the com.sun.management.jmxremote or com.sun.management.jmxremote.port options at the
command line, and JConsole does not need to connect to the management agent before the
application is started. If you select this application, you will be informed in a note onscreen that
the management agent will be enabled when the connection is made. In the example connection
dialog shown in Figure 3–1, the NetBeans IDE and JConsole itself were both started within a Java
SE 6 platform VM. Both appear in normal text, meaning that JConsole can connect to them. In
Figure 3–1, JConsole is selected, and the note is visible.

Starting JConsole

Java SEMonitoring andManagement Guide • October 200640

� Applications that are not attachable, with themanagement agent disabled.These include
applications started on a J2SE 1.4.2 platform or started on a J2SE 5.0 platform without the
-Dcom.sun.management.jmxremote or com.sun.management.jmxremote.port options. These
applications appear grayed-out in the table and JConsole cannot connect to them. In the example
connection dialog shown in Figure 3–1, the Anagrams application was started with a J2SE 5.0
platform VM without any of the management properties to enable the JMX agent, and
consequently shows up in gray and cannot be selected.

FIGURE 3–2Attempting to Connect to anApplication without the ManagementAgent Enabled

In the example connection dialog shown in Figure 3–2, you can see that the Anagrams application has
been selected by clicking on it, but the Connect button remains grayed-out and a note has appeared
informing you that the management agent is not enabled for this process. JConsole cannot connect
to Anagrams because it was not started with the correct Java VM or with the correct options.

Connecting JConsole to aRemoteProcess
When the connection dialog opens, you are also given the option of connecting to a remote process.

Starting JConsole

Chapter 3 • Using JConsole 41

FIGURE 3–3Creating a Connection to a Remote Process

To monitor a process running on a remote Java VM, you must provide the following information.

� Host name: name of the machine on which the Java VM is running.
� Port number: the JMX agent port number you specified when you started the Java VM.
� User name and password: the user name and password to use (required only if monitoring a Java

VM through a JMX agent that requires password authentication).

For information about setting the port number of the JMX agent, see “Enabling the Out-of-the-Box
Management” on page 18. For information about user names and passwords, see “Using Password
andAccess Files” on page 24.

To monitor the Java VM that is running JConsole, simply click Connect, using host localhost and
the port 0.

ConnectingUsing a JMXServiceURL
You can also use the Remote Process option to connect to other JMX agents by specifying their JMX
service URL, and the user name and password. The syntax of a JMX service URL requires that you
provide the transport protocol used to make the connection, as well as a service access point. The full
syntax for a JMX service URL is described in theAPI documentation for
javax.management.remote.JMXServiceURL.

Starting JConsole

Java SEMonitoring andManagement Guide • October 200642

FIGURE 3–4Connecting to a JMXAgent Using the JMX Service URL

If the JMX agent uses a connector which is not included in the Java platform, you need to add the
connector classes to the class path when you run the jconsole command, as follows.

% jconsole -J-Djava.class.path=JAVA_HOME/lib/jconsole.jar:JAVA_HOME/lib/tools.jar:connector-path

In the command above, connector-path is the directory or the Java archive (Jar) file containing the
connector classes that are not included in the JDK, that are to be used by JConsole.

Presenting the JConsole Tabs
Once you have connected JConsole to an application, JConsole is composed of six tabs.

� Overview:Displays overview information about the Java VM and monitored values.
� Memory:Displays information about memory use.
� Threads:Displays information about thread use.
� Classes:Displays information about class loading.
� VM:Displays information about the Java VM.
� MBeans:Displays information about MBeans.

You can use the green connection status icon in the upper right-hand corner of JConsole at any time,
to disconnect from or reconnect to a running Java VM.You can connect to any number of running
Java VMs at a time by selecting Connection then New Connection from the drop-down menu.

Presenting the JConsole Tabs

Chapter 3 • Using JConsole 43

ViewingOverview Information
The Overview tab displays graphical monitoring information about CPU usage, memory usage,
thread counts, and the classes loaded in the Java VM, all in a single screen.

FIGURE 3–5OverviewTab

The Overview tab provides an easy way to correlate information that was previously only available by
switching between multiple tabs.

SavingChartData
JConsole allows you to save the data presented in the charts in a Comma Separated Values (CSV) file.
To save data from a chart, simply right-click on any chart, select Save data as..., and then specify
the file in which the data will be saved. You can save the data from any of the charts displayed in any
of JConsole’s different tabs in this way.

The CSV format is commonly used for data exchange between spreadsheet applications. The CSV
file can be imported into spreadsheet applications and can be used to create diagrams in these
applications. The data is presented as two or more named columns, where the first column
represents the time stamps.After importing the file into a spreadsheet application, you will usually
need to select the first column and change its format to be "date" or "date/time" as appropriate.

Presenting the JConsole Tabs

Java SEMonitoring andManagement Guide • October 200644

MonitoringMemoryConsumption
The Memory tab provides information about memory consumption and memory pools.

FIGURE 3–6MemoryTab

The Memory tab features a “Perform GC” button that you can click to perform garbage collection
whenever you want. The chart shows the memory use of the Java VM over time, for heap and
non-heap memory, as well as for specific memory pools. The memory pools available depend on
which version of the Java VM is being used. For the HotSpot Java VM, the memory pools for serial
garbage collection are the following.

� Eden Space (heap): The pool from which memory is initially allocated for most objects.
� Survivor Space (heap): The pool containing objects that have survived the garbage collection of

the Eden space.
� Tenured Generation (heap): The pool containing objects that have existed for some time in the

survivor space.
� Permanent Generation (non-heap): The pool containing all the reflective data of the virtual

machine itself, such as class and method objects. With Java VMs that use class data sharing, this
generation is divided into read-only and read-write areas.

� Code Cache (non-heap): The HotSpot Java VM also includes a code cache, containing memory
that is used for compilation and storage of native code.

Presenting the JConsole Tabs

Chapter 3 • Using JConsole 45

You can display different charts for charting the consumption of these memory pools by choosing
from the options in the Chart drop-down menu.Also, clicking on either of the Heap or Non-Heap
bar charts in the bottom right-hand corner will switch the chart displayed. Finally, you can specify
the time range over which you track memory usage by selecting from the options in the Time Range
drop-down menu.

For more information about these memory pools, see “Garbage Collection” on page 47 below.

TheDetails area shows several current memory metrics:

� Used: the amount of memory currently used, including the memory occupied by all objects, both
reachable and unreachable.

� Committed: the amount of memory guaranteed to be available for use by the Java VM. The
amount of committed memory may change over time. The Java virtual machine may release
memory to the system and the amount of committed memory could be less than the amount of
memory initially allocated at start up. The amount of committed memory will always be greater
than or equal to the amount of used memory.

� Max: the maximum amount of memory that can be used for memory management. Its value may
change or be undefined.Amemory allocation may fail if the Java VM attempts to increase the
used memory to be greater than committed memory, even if the amount used is less than or equal
to max (for example, when the system is low on virtual memory).

� GC time: the cumulative time spent on garbage collection and the total number of invocations. It
may have multiple rows, each of which represents one garbage collector algorithm used in the
Java VM.

The bar chart on the lower right-hand side shows the memory consumed by the memory pools in
heap and non-heap memory. The bar will turn red when the memory used exceeds the memory
usage threshold. You can set the memory usage threshold through an attribute of the MemoryMXBean.

HeapandNon-HeapMemory
The Java VM manages two kinds of memory: heap and non-heap memory, both of which are created
when the Java VM starts.

� Heap memory is the runtime data area from which the Java VM allocates memory for all class
instances and arrays. The heap may be of a fixed or variable size. The garbage collector is an
automatic memory management system that reclaims heap memory for objects.

� Non-heap memory includes a method area shared among all threads and memory required for
the internal processing or optimization for the Java VM. It stores per-class structures such as a
runtime constant pool, field and method data, and the code for methods and constructors. The
method area is logically part of the heap but, depending on the implementation, a Java VM may
not garbage collect or compact it. Like the heap memory, the method area may be of a fixed or
variable size. The memory for the method area does not need to be contiguous.

In addition to the method area, a Java VM may require memory for internal processing or
optimization which also belongs to non-heap memory. For example, the Just-In-Time (JIT) compiler
requires memory for storing the native machine code translated from the Java VM code for high
performance.

Presenting the JConsole Tabs

Java SEMonitoring andManagement Guide • October 200646

MemoryPools andMemoryManagers
Memory pools and memory managers are key aspects of the Java VM’s memory system.

� Amemory pool represents a memory area that the Java VM manages. The Java VM has at least
one memory pool and it may create or remove memory pools during execution.Amemory pool
can belong either to heap or to non-heap memory.

� Amemory manager manages one or more memory pools. The garbage collector is a type of
memory manager responsible for reclaiming memory used by unreachable objects.A Java VM
may have one or more memory managers. It may add or remove memory managers during
execution.Amemory pool can be managed by more than one memory manager.

GarbageCollection
Garbage collection (GC) is how the Java VM frees memory occupied by objects that are no longer
referenced. It is common to think of objects that have active references as being "alive" and
non-referenced (or unreachable) objects as "dead." Garbage collection is the process of releasing
memory used by the dead objects. The algorithms and parameters used by GC can have dramatic
effects on performance.

The Java HotSpot VM garbage collector uses generational GC. Generational GC takes advantage of
the observation that most programs conform to the following generalizations.

� They create many objects that have short lives, for example, iterators and local variables.
� They create some objects that have very long lives, for example, high level persistent objects.

Generational GC divides memory into several generations, and assigns one or more memory pools
to each. When a generation uses up its allotted memory, the VM performs a partial GC (also called a
minor collection) on that memory pool to reclaim memory used by dead objects. This partial GC is
usually much faster than a full GC.

The Java HotSpot VM defines two generations: the young generation (sometimes called the
"nursery") and the old generation. The young generation consists of an "Eden space" and two
"survivor spaces." The VM initially assigns all objects to the Eden space, and most objects die there.
When it performs a minor GC, the VM moves any remaining objects from the Eden space to one of
the survivor spaces. The VM moves objects that live long enough in the survivor spaces to the
"tenured" space in the old generation. When the tenured generation fills up, there is a full GC that is
often much slower because it involves all live objects. The permanent generation holds all the
reflective data of the virtual machine itself, such as class and method objects.

The default arrangement of generations looks something like Figure 3–7.

Presenting the JConsole Tabs

Chapter 3 • Using JConsole 47

FIGURE 3–7Generations ofData inGarbageCollection

If the garbage collector has become a bottleneck, you can improve performance by customizing the
generation sizes. Using JConsole, you can investigate the sensitivity of your performance metric by
experimenting with the garbage collector parameters. For more information, see Tuning Garbage
Collection with the 5.0 HotSpot VM.

Monitoring ThreadUse
The Threads tab provides information about thread use.

Presenting the JConsole Tabs

Java SEMonitoring andManagement Guide • October 200648

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html

FIGURE 3–8ThreadsTab

The Threads list in the lower left corner lists all the active threads. If you enter a string in the Filter
field, the Threads list will show only those threads whose name contains the string you enter. Click
on the name of a thread in the Threads list to display information about that thread to the right,
including the thread name, state, and stack trace.

The chart shows the number of live threads over time. Two lines are shown.

� Red: peak number of threads
� Blue: number of live threads.

The Threading MXBean provides several other useful operations that are not covered by the Threads
tab.

� findMonitorDeadlockedThreads: Detects if any threads are deadlocked on the object monitor
locks. This operation returns an array of deadlocked thread IDs.

� getThreadInfo: Returns the thread information. This includes the name, stack trace, and the
monitor lock that the thread is currently blocked on, if any, and which thread is holding that lock,
as well as thread contention statistics.

� getThreadCpuTime: Returns the CPU time consumed by a given thread

You can access these additional features via the MBeans tab by selecting the Threading MXBean in
the MBeans tree. This MXBean lists all the attributes and operations for accessing threading
information in the Java VM being monitored. See “Monitoring and Managing MBeans” on page 53.

Presenting the JConsole Tabs

Chapter 3 • Using JConsole 49

DetectingDeadlockedThreads
To check if your application has run into a deadlock (for example, your application seems to be
hanging), deadlocked threads can be detected by clicking on the "Detect Deadlock" button. If any
deadlocked threads are detected, these are displayed in a new tab that appears next to the "Threads"
tab, as shown in Figure 3–9.

FIGURE 3–9DeadlockedThreads

The Detect Deadlock button will detect deadlock cycles involving object monitors and
java.util.concurrent ownable synchronizers (see theAPI specification documentation for
java.lang.management.LockInfo). Monitoring support for java.util.concurrent locks has been
added in Java SE 6. If JConsole connects to a J2SE 5.0 VM, the Detect Deadlock mechanism will only
find deadlocks related to object monitors. JConsole will not show any deadlocks related to ownable
synchronizers.

See theAPI documentation for java.lang.Thread for more information about threads and daemon
threads.

MonitoringClass Loading
The Classes tab displays information about class loading.

Presenting the JConsole Tabs

Java SEMonitoring andManagement Guide • October 200650

http://java.sun.com/javase/6/docs/api/java/lang/management/LockInfo.html

FIGURE 3–10ClassesTab

The chart plots the number of classes loaded over time.

� The red line is the total number of classes loaded (including those subsequently unloaded).
� The blue line is the current number of classes loaded.

The Details section at the bottom of the tab displays the total number of classes loaded since the Java
VM started, the number currently loaded and the number unloaded. You can set the tracing of class
loading to verbose output by checking the checkbox in the top right-hand corner.

ViewingVM Information
The VM Summary tab provides information about the Java VM.

Presenting the JConsole Tabs

Chapter 3 • Using JConsole 51

FIGURE 3–11VMSummaryTab

The information presented in this tab includes the following.

� Summary
� Uptime: Total amount of time since the Java VM was started.
� Process CPU Time: Total amount of CPU time that the Java VM has consumed since it was

started.
� Total Compile Time: Total accumulated time spent in JIT compilation. The Java VM

determines when JIT compilation occurs. The Hotspot VM uses adaptive compilation, in
which the VM launches an application using a standard interpreter, but then analyzes the
code as it runs to detect performance bottlenecks, or "hot spots".

� Threads
� Live threads: Current number of live daemon threads plus non-daemon threads.
� Peak: Highest number of live threads since Java VM started.
� Daemon threads: Current number of live daemon threads.

Presenting the JConsole Tabs

Java SEMonitoring andManagement Guide • October 200652

� Total threads started: Total number of threads started since Java VM started, including
daemon, non-daemon, and terminated threads.

� Classes
� Current classes loaded: Number of classes currently loaded into memory.
� Total classes loaded: Total number of classes loaded into memory since the Java VM started,

including those that have subsequently been unloaded.
� Total classes unloaded: Number of classes unloaded from memory since the Java VM started.

� Memory
� Current heap size: Number of kilobytes currently occupied by the heap.
� Committed memory: Total amount of memory allocated for use by the heap.
� Maximum heap size: Maximum number of kilobytes occupied by the heap.
� Objects pending for finalization: Number of objects pending for finalization.
� Garbage collector: Information about garbage collection, including the garbage collector

names, number of collections performed, and total time spent performing GC.
� Operating System

� Total physical memory: Amount of random-access memory (RAM) the operating system has.
� Free physical memory: Amount of free RAM available to the operating system.
� Committed virtual memory: Amount of virtual memory guaranteed to be available to the

running process.
� Other Information

� VM arguments: The input arguments the application passed to the Java VM, not including
the arguments to the main method.

� Class path: The class path that is used by the system class loader to search for class files.
� Library path: The list of paths to search when loading libraries.
� Boot class path: The boot class path is used by the bootstrap class loader to search for class

files.

Monitoring andManagingMBeans
The MBeans tab displays information about all the MBeans registered with the platform MBean
server in a generic way. The MBeans tab allows you to access the full set of the platform MXBean
instrumentation, including that which is not visible in the other tabs. In addition, you can monitor
and manage your application’s MBeans using the MBeans tab.

Presenting the JConsole Tabs

Chapter 3 • Using JConsole 53

FIGURE 3–12MBeansTab

The tree on the left shows all the MBeans currently running. When you select an MBean in the tree,
its MBeanInfo and its MBean Descriptor are both displayed on the right, and any attributes,
operations or notifications appear in the tree below it.

All the platform MXBeans and their various operations and attributes are accessible via JConsole’s
MBeans tab.

Constructing theMBeanTree
By default, the MBeans are displayed in the tree based on their object names. The order of key
properties specified when the object names are created is preserved by JConsole when it adds
MBeans to the MBean tree. The exact key property list that JConsole will use to build the MBean tree
will be the one returned by the method ObjectName.getKeyPropertyListString(), with type as
the first key, and j2eeType, if present, as the second key.

However, relying on the default order of the ObjectName key properties can sometimes lead to
unexpected behavior when JConsole renders the MBean tree. For example, if two object names have
similar keys but their key order differs, then the corresponding MBeans will not be created under the
same node in the MBean tree.

For example, suppose you create TriangleMBean objects with the following names.

Presenting the JConsole Tabs

Java SEMonitoring andManagement Guide • October 200654

com.sun.example:type=Triangle,side=isosceles,name=1

com.sun.example:type=Triangle,name=2,side=isosceles

com.sun.example:type=Triangle,side=isosceles,name=3

As far as the JMX technology is concerned, these objects will be treated in exactly the same way. The
order of the keys in the object name makes no difference to the JMX technology. However, if
JConsole connects to these MBeans and the default MBean tree rendering is used, then the object
com.sun.example:type=Triangle,name=2,side=isosceles will end up being created under the
Triangle node, in a node called 2, which in turn will contain a sub-node called isosceles. The other
two isosceles triangles, name=1 and name=3, will be grouped together under Triangle in a different
node called isosceles, as shown in Figure 3–13.

FIGURE 3–13Example ofUnexpectedMBeanTree Rendering

To avoid this problem, you can specify the order in which the MBeans are displayed in the tree by
supplying an ordered key property list when you start JConsole at the command line. This is
achieved by setting the system property com.sun.tools.jconsole.mbeans.keyPropertyList, as
shown in the following command.

% jconsole -J-Dcom.sun.tools.jconsole.mbeans.keyPropertyList=key[,key]*

The key property list system property takes a comma-separated list of keys, in the order of your
choosing, where key must be a string representing an object name key or an empty string. If a key
specified in the list does not apply to a particular MBean, then that key will be discarded. If an MBean
has more keys than the ones specified in the key property list, then the key order defined by the value
returned by ObjectName.getKeyPropertyListString()will be used to complete the key order
defined by keyPropertyList. Therefore, specifying an empty list of keys simply means that JConsole
will display keys in the order they appear in the MBean’s ObjectName.

So, returning to the example of the TriangleMBeans cited above, you could choose to start JConsole
specifying the keyPropertyList system property, so that all your MBeans will be grouped according
to their side key property first, and their name key property second. To do this, you would start
JConsole with the following command.

% jconsole -J-Dcom.sun.tools.jconsole.mbeans.keyPropertyList=side,name

Starting JConsole with this system property specified would produce the MBean tree shown in Figure
3–14.

Presenting the JConsole Tabs

Chapter 3 • Using JConsole 55

FIGURE 3–14Example of MBean Tree Constructed Using keyPropertyList

In Figure 3–14, the side key comes first, followed by the name key. The type key comes at the end
because it was not specified in the key property list, so the MBean tree algorithm applied the original
key order for the remaining keys. Consequently, the type key is appended at the end, after the keys
which were defined by the keyPropertyList system property.

According to the object name convention defined by the JMX Best Practices Guidelines, the type key
should always come first. So, to respect this convention you should start JConsole with the following
system property.

% jconsole -J-Dcom.sun.tools.jconsole.mbeans.keyPropertyList=type,side,name

The above command will cause JConsole to render the MBean tree for the Triangle MBeans as shown
in Figure 3–15.

FIGURE 3–15Example of MBean Tree Constructed Respecting JMX Best Practices

This is obviously much more comprehensible than the MBean trees shown in Figure 3–13 and Figure
3–14.

MBeanAttributes
Selecting theAttributes node displays all the attributes of an MBean. Figure 3–16 shows all the
attributes of the Threading platform MXBean.

Presenting the JConsole Tabs

Java SEMonitoring andManagement Guide • October 200656

http://java.sun.com/products/JavaManagement/best-practices.html

FIGURE 3–16ViewingAllMBeanAttributes

Selecting an individual MBean attribute from the tree then displays the attribute’s value, its
MBeanAttributeInfo, and the associated Descriptor in the right pane, as you can see in Figure 3–17.

Presenting the JConsole Tabs

Chapter 3 • Using JConsole 57

FIGURE 3–17Viewing an IndividualMBeanAttribute

You can display additional information about an attribute by double-clicking on the attribute value,
if it appears in bold text. For example, if you click on the value of the HeapMemoryUsage attribute of
the java.lang.MemoryMBean, you will see a chart that looks something like Figure 3–18.

FIGURE 3–18DisplayingAttributeValues

Presenting the JConsole Tabs

Java SEMonitoring andManagement Guide • October 200658

Double-clicking on numeric attribute values will display a chart that plots changes in that numeric
value. For example, double-clicking on the CollectionTime attribute of the Garbage Collector
MBean PS Marksweep will plot the time spent performing garbage collection.

You can also use JConsole to set the values of writable attributes. The value of a writable attribute is
displayed in blue. Here you can see the Memory MBean’s Verbose attribute.

FIGURE 3–19 SettingWritableAttributeValues

You can set attributes by clicking on them and then editing them. For example, to enable or disable
the verbose tracing of the garbage collector in JConsole, select the Memory MXBean in the MBeans
tab and set the Verbose attribute to true or false. Similarly, the class loading MXBean also has the
Verbose attribute, which can be set to enable or disable class loading verbose tracing.

MBeanOperations
Selecting the Operations node displays all the operations of an MBean. The MBean operations
appear as buttons, that you can click to invoke the operation.Figure 3–20 shows all the operations of
the Threading platform MXBean.

Presenting the JConsole Tabs

Chapter 3 • Using JConsole 59

FIGURE 3–20ViewingAllMBeanOperations

Selecting an individual MBean operation in the tree displays the button for invoking the MBean
operation, and the operation’s MBeanOperationInfo and its Descriptor, as shown in Figure 3–21.

Presenting the JConsole Tabs

Java SEMonitoring andManagement Guide • October 200660

FIGURE 3–21Viewing IndividualMBeanOperations

MBeanNotifications
You can subscribe to receive notifications by selecting the Notifications node in the left-hand tree,
and clicking the Subscribe button that appears on the right. The number of notifications received is
displayed in square brackets, and the Notifications node itself will appear in bold text when new
notifications are received. The notifications of the Memory platform MXBean are shown in Figure
3–22.

Presenting the JConsole Tabs

Chapter 3 • Using JConsole 61

FIGURE 3–22ViewingMBeanNotifications

Selecting an individual MBean notification displays the MBeanNotificationInfo in the right pane,
as shown in Figure 3–23.

FIGURE 3–23Viewing IndividualMBeanNotifications

Presenting the JConsole Tabs

Java SEMonitoring andManagement Guide • October 200662

HotSpotDiagnosticMXBean
JConsole’s MBeans tab also allows you to tell the HotSpot VM to perform a heap dump, and to get or
set a VM option via the HotSpotDiagnosticMXBean.

FIGURE 3–24Viewing theHotSpotDiagnosticMBean

You can perform a heap dump manually by invoking the com.sun.management.HotSpotDiagnostic
MXBean’s dumpHeap operation. In addition, you can specify the HeapDumpOnOutOfMemoryError Java
VM option using the setVMOption operation, so that the VM performs a heap dump automatically
whenever it receives an OutOfMemoryError.

CreatingCustomTabs
In addition to the existing standard tabs, you can add your own custom tabs to JConsole, to perform
your own monitoring activities. The JConsole plug-inAPI provides a mechanism by which you can,
for example, add a tab to access your own application’s MBeans. The JConsole plug-inAPI defines
the com.sun.tools.jconsole.JConsolePlugin abstract class that you can extend to build your
custom plug-in.

As stated above, your plug-in must extend JConsolePlugin, and implement the JConsolePlugin
getTabs and newSwingWorkermethods. The getTabsmethod returns either the list of tabs to be
added to JConsole, or an empty list. The newSwingWorkermethod returns the SwingWorker to be
responsible for the plug-in’s GUI update.

Presenting the JConsole Tabs

Chapter 3 • Using JConsole 63

Your plug-in must be provided in a Java archive (JAR) file that contains a file named
META-INF/services/com.sun.tools.jconsole.JConsolePlugin. This JConsolePlugin file itself
contains a list of all the fully-qualified class names of the plug-ins you want to add as new JConsole
tabs. JConsole uses the service-provider loading facility to look up and load the plug-ins. You can
have multiple plug-ins, with one entry per plug-in in the JConsolePlugin.

To load the new custom plug-ins into JConsole, start JConsole with the following command:

% jconsole -pluginpath plugin-path

In the above command, plugin-path specifies the paths to the JConsole plug-ins to be looked up.
These paths can either be to directory names or to JAR files, and multiple paths can be specified,
using your platform’s standard separator character.

An example JConsole plug-in is provided with the Java SE 6 platform. The JTop application is a JDK
demonstration that shows the CPU usage of all threads running in the application. This demo is
useful for identifying threads that have high CPU consumption, and it has been updated to be used
as a JConsole plug-in as well as a standalone GUI. JTop is bundled with the Java SE 6 platform, as a
demo application. You can run JConsole with the JTop plug-in by running the following command:

% JDK_HOME/bin/jconsole -pluginpath JDK_HOME/demo/management/JTop/JTop.jar

If you connect to this instance of JConsole, you will see that the JTop tab has been added, showing
CPU usage of the various threads running.

FIGURE 3–25Viewing aCustomPlug-in Tab

Presenting the JConsole Tabs

Java SEMonitoring andManagement Guide • October 200664

Using the PlatformMBean Server and Platform
MXBeans

This chapter introduces the MBean server and the MXBeans that are provided as part of the Java
Platform, Standard Edition (Java SE platform), which can be used for monitoring and management
purposes. Java Management Extensions (JMX) technology MBeans and MBean servers were
introduced briefly in Chapter 1. More information about the JMX technology can be found in the
JMX Technology documentation for the Java SE platform.

Using thePlatformMBeanServer
An MBean server is a repository of MBeans that provides management applications access to
MBeans.Applications do not access MBeans directly, but instead access them through the MBean
server via their unique ObjectName. An MBean server implements the interface
javax.management.MBeanServer.

The platform MBean server was introduced in the Java 2 Platform, Standard Edition 5.0, and is an
MBean server that is built into the Java Virtual Machine (Java VM). The platform MBean server can
be shared by all managed components that are running in the Java VM.You access the platform
MBean server using the java.lang.management.ManagementFactorymethod
getPlatformMBeanServer. Of course, you can also create your own MBean server using the
javax.management.MBeanServerFactory class. However, there is generally no need for more than
one MBean server, so using the platform MBean server is recommended.

AccessingPlatformMXBeans
Aplatform MXBean, is an MBean for monitoring and managing the Java VM. Each MXBean
encapsulates a part of the VM functionality.A full list of the MXBeans that are provided with the
platform is provided in Table 1–1 in Chapter 1.

Amanagement application can access platform MXBeans in three different ways.

� Direct access, via the ManagementFactory class.

4C H A P T E R 4

65

http://java.sun.com/javase/6/docs/technotes/guides/jmx/index.html

� Direct access, via an MXBean proxy.
� Indirect access, via the MBeanServerConnection class.

These three ways of accessing the platform MXBeans are described in the next three sections.

AccessingPlatformMXBeans via the
ManagementFactoryClass
An application can make direct calls to the methods of a platform MXBean that is running in the
same Java VM as itself. To make direct calls, you can use the static methods of the
ManagementFactory class. ManagementFactory has accessor methods for each of the different
platform MXBeans, such as, getClassLoadingMXBean(), getGarbageCollectorMXBeans(),
getRuntimeMXBean(), and so on. In cases where there are more than one platform MXBean, the
method returns a list of the platform MXBeans found.

For example, Example 4–1 uses the static method of ManagementFactory to get the platform
MXBean RuntimeMXBean, and then gets the vendor name from the platform MXBean.

EXAMPLE 4–1Accessing a Platform MXBean via the ManagementFactoryClass

RuntimeMXBean mxbean = ManagementFactory.getRuntimeMXBean();

String vendor = mxbean.getVmVendor();

AccessingPlatformMXBeans via anMXBeanProxy
An application can also call platform MXBean methods via an MXBean proxy. To do so, you must
construct an MXBean proxy instance that forwards the method calls to a given MBean server by
calling the static method ManagementFactory.newPlatformMXBeanProxy(). An application
typically constructs a proxy to obtain remote access to a platform MXBean of another Java VM.

For example, Example 4–2 performs exactly the same operation as Example 4–1, but this time uses
an MXBean proxy.

EXAMPLE 4–2Accessing a Platform MXBean via an MXBean Proxy

MBeanServerConnection mbs;

...

// Get a MBean proxy for RuntimeMXBean interface

RuntimeMXBean proxy =

ManagementFactory.newPlatformMXBeanProxy(mbs,

ManagementFactory.RUNTIME_MXBEAN_NAME,

RuntimeMXBean.class);

// Get standard attribute "VmVendor"

String vendor = proxy.getVmVendor();

Accessing PlatformMXBeans

Java SEMonitoring andManagement Guide • October 200666

AccessingPlatformMXBeans via the
MBeanServerConnection Class
An application can indirectly call platform MXBean methods through an MBeanServerConnection

that connects to the platform MBean server of another running Java VM.You use the
MBeanServerConnection class’s getAttribute()method to get an attribute of a platform MXBean,
providing the MBean’s ObjectName and the attribute name as parameters.

For example, Example 4–3 performs the same job as Example 4–1 and Example 4–2, but uses an
indirect call through MBeanServerConnection.

EXAMPLE 4–3Accessing a Platform MXBean via the MBeanServerConnectionClass

MBeanServerConnection mbs;

...

try {

ObjectName oname = new ObjectName(ManagementFactory.RUNTIME_MXBEAN_NAME);

// Get standard attribute "VmVendor"

String vendor = (String) mbs.getAttribute(oname, "VmVendor");

} catch (....) {

// Catch the exceptions thrown by ObjectName constructor

// and MBeanServer.getAttribute method

...

}

Using SunMicrosystems’ PlatformExtension
Java VMs can extend the management interface by defining interfaces for platform-specific
measurements and management operations. The static factory methods in the ManagementFactory
class will return the MBeans with the platform extension.

The com.sun.management package contains Sun Microsystems’ platform extensions. The following
sections provide examples of how to access a platform-specific attribute from Sun Microsystems’
implementation of the OperatingSystemMXBean.

AccessingMXBeanAttributesDirectly
Example 4–4 illustrates direct access to one of Sun Microsystems’ MXBean interfaces.

EXAMPLE 4–4Accessing anMXBeanAttributeDirectly

com.sun.management.OperatingSystemMXBean mxbean =

(com.sun.management.OperatingSystemMXBean) ManagementFactory.getOperatingSystemMXBean();

Using SunMicrosystems’ Platform Extension

Chapter 4 • Using the PlatformMBean Server and PlatformMXBeans 67

EXAMPLE 4–4Accessing anMXBeanAttributeDirectly (Continued)

// Get the number of processors

int numProcessors = mxbean.getAvailableProcessors();

// Get the Sun-specific attribute Process CPU time

long cpuTime = mxbean.getProcessCpuTime();

AccessingMXBeanAttributes via
MBeanServerConnection

Example 4–5 illustrates access to one of Sun Microsystems’ MXBean interfaces via the
MBeanServerConnection class.

EXAMPLE 4–5Accessing anMXBeanAttribute via MBeanServerConnection

MBeanServerConnection mbs;

// Connect to a running Java VM (or itself) and get MBeanServerConnection

// that has the MXBeans registered in it

...

try {

// Assuming the OperatingSystem MXBean has been registered in mbs

ObjectName oname = new ObjectName(ManagementFactory.OPERATING_SYSTEM_MXBEAN_NAME);

// Get standard attribute "Name"

String vendor = (String) mbs.getAttribute(oname, "Name");

// Check if this MXBean contains Sun Microsystems’ extension

if (mbs.isInstanceOf(oname, "com.sun.management.OperatingSystemMXBean")) {

// Get platform-specific attribute "ProcessCpuTime"

long cpuTime = (Long) mbs.getAttribute(oname, "ProcessCpuTime");

}

} catch (....) {

// Catch the exceptions thrown by ObjectName constructor

// and MBeanServer methods

...

}

Using SunMicrosystems’ Platform Extension

Java SEMonitoring andManagement Guide • October 200668

Monitoring ThreadContention andCPUTime
The ThreadMXBean platform MXBean provides support for monitoring thread contention and
thread Central Processing Unit (CPU) time.

The Sun HotSpot VM supports thread contention monitoring. You use the
ThreadMXBean.isThreadContentionMonitoringSupported() method to determine if a Java VM
supports thread contention monitoring. Thread contention monitoring is disabled by default. Use
the setThreadContentionMonitoringEnabled()method to enable it.

The Sun HotSpot VM supports the measurement of thread CPU time on most platforms. The CPU
time provided by this interface has nanosecond precision but not necessarily nanosecond accuracy.

You use the isThreadCpuTimeSupported()method to determine if a Java VM supports the
measurement of the CPU time for any thread. You use isCurrentThreadCpuTimeSupported() to
determine if a Java VM supports the measurement of the CPU time for the current thread.AJava VM
that supports CPU time measurement for any thread will also support that for the current thread.

AJava VM can disable thread CPU time measurement. You use the isThreadCpuTimeEnabled()
method to determine if thread CPU time measurement is enabled . You use the
setThreadCpuTimeEnabled()method to enable or disable the measurement of thread CPU time.

Managing theOperating System
The OperatingSystem platform MXBean allows you to access certain operating system resource
information, such as the following.

� Process CPU time.
� Amount of total and free physical memory.
� Amount of committed virtual memory (that is, the amount of virtual memory guaranteed to be

available to the running process).
� Amount of total and free swap space.
� Number of open file descriptors (only for UNIX platforms).

When the Operating System MXBean in the MBeans tab is selected in JConsole, you see all the
attributes and operations including the platform extension. You can monitor the changes of a
numerical attribute over time by double-clicking the value field of the attribute.

Managing theOperating System

Chapter 4 • Using the PlatformMBean Server and PlatformMXBeans 69

LoggingManagement
The Java SE platform provides a special MXBean for logging purposes, the LoggingMXBean interface.

The LoggingMXBean enables you to perform the following tasks.

� Get the name of the log level associated with the specified logger.
� Get the list of currently registered loggers.
� Get the name of the parent for the specified logger.
� Set the specified logger to the specified new level.

The unique ObjectName of the LoggingMXBean is java.util.logging:type=Logging. This object
name is stored in LogManager.LOGGING_MXBEAN_NAME.

There is a single global instance of the LoggingMXBean, which you can get by calling
LogManager.getLoggingMXBean().

The LoggingMXBean defines a LoggerNames attribute describing the list of logger names. To find
the list of loggers in your application, you can select the Logging MXBean under the
java.util.logging domain in the MBeans tab, and double-click on the value field of the
LoggerNames attribute. The Logging MXBean also supports two operations.

� getLoggerLevel: Returns the log level of a given logger.
� setLoggerLevel: Sets the log level of a given logger to a new level.

These operations take a logger name as the first parameter. To change the level of a logger, enter the
logger name in the first parameter and the name of the level it should be set to in the second
parameter of the setLoggerLevel operation.

Detecting LowMemory
Memory use is an important attribute of the memory system. It can be indicative of the following
problems.

� Excessive memory consumption by an application.
� An excessive workload imposed on the automatic memory management system.
� Potential memory leakages.

There are two kinds of memory thresholds you can use to detect low memory conditions: a usage
threshold and a collection usage threshold. You can detect low memory conditions using either of
these thresholds with polling or threshold notification. All these concepts are described in the next
sections.

LoggingManagement

Java SEMonitoring andManagement Guide • October 200670

Memory Thresholds
Amemory pool can have two kinds of memory thresholds: a usage threshold and a collection usage
threshold. Either one of these thresholds may not be supported by a particular memory pool. The
values for the usage threshold and collection usage threshold can both be set using the MBeans tab in
JConsole.

UsageThreshold
The usage threshold is a manageable attribute of some memory pools. It enables you to monitor
memory use with a low overhead. Setting the threshold to a positive value enables a memory pool to
perform usage threshold checking. Setting the usage threshold to zero disables usage threshold
checking. The default value is supplied by the Java VM.

AJava VM performs usage threshold checking on a memory pool at the most appropriate time,
typically during garbage collection. Each memory pool increments a usage threshold count
whenever the usage crosses the threshold.

You use the isUsageThresholdSupported()method to determine whether a memory pool supports
a usage threshold, since a usage threshold is not appropriate for some memory pools. For example, in
a generational garbage collector (such as the one in the HotSpot VM; see “Garbage Collection”
on page 47 in Chapter 3), most of the objects are allocated in the young generation, from the Eden
memory pool. The Eden pool is designed to be filled up. Garbage collecting the Eden memory pool
will free most of its memory space since it is expected to contain mostly short-lived objects that are
unreachable at garbage collection time. So, it is not appropriate for the Eden memory pool to support
a usage threshold.

CollectionUsage Threshold
The collection usage threshold is a manageable attribute of some garbage-collected memory pools.
After a Java VM has performed garbage collection on a memory pool, some memory in the pool will
still be in use. The collection usage threshold allows you to set a value for this memory. You use the
isCollectionUsageThresholdSupported()method of MemoryPoolMXBean to determine if the pool
supports a collection usage threshold.

A Java VM may check the collection usage threshold on a memory pool when it performs garbage
collection. Set the collection usage threshold to a positive value to enable checking. Set the collection
usage threshold to zero (the default) to disable checking.

The usage threshold and collection usage threshold can be set in the MBeans tab of JConsole.

MemoryMXBean
The various memory thresholds can be managed via the platform MemoryMXBean. The MemoryMXBean
defines the following four attributes.

� HeapMemoryUsage: A read-only attribute describing the current heap memory usage.
� NonHeapMemoryUsage: A read-only attribute describing non-heap memory usage.

Detecting LowMemory

Chapter 4 • Using the PlatformMBean Server and PlatformMXBeans 71

� ObjectPendingFinalizationCount: A read-only attribute describing the number of objects
pending for finalization.

� Verbose: Aboolean attribute describing the Garbage Collection (GC) verbose tracing setting.
This can be set dynamically. The GC verbose traces will be displayed at the location specified
when you start the Java VM. The default location for GC verbose output of the Hotspot VM is
stdout.

The Memory MXBean supports one operation, gc, for explicit garbage collection requests.

Details of the Memory MXBean interface are defined in the java.lang.management.MemoryMXBean
specification.

MemoryPoolMXBean
The MemoryPoolMXBean platform MXBean defines a set of operations to manage memory thresholds.

� getUsageThreshold()

� setUsageThreshold(long threshold)

� isUsageThresholdExceeded()

� isUsageThresholdSupported()

� getCollectionUsageThreshold()

� setCollectionUsageThreshold(long threshold)

� isCollectionUsageThresholdSupported()

� isCollectionUsageThresholdExceeded()

Each memory pool may have two kinds of memory thresholds for low memory detection support: a
usage threshold and a collection usage threshold. Either one of these thresholds might not be
supported by a particular memory pool. For more information, see theAPI reference documentation
for the MemoryPoolMXBean class.

Polling
An application can continuously monitor its memory usage by calling either the getUsage()
method for all memory pools or the isUsageThresholdExceeded()method for memory pools that
support a usage threshold.

Example 4–6 has a thread dedicated to task distribution and processing.At every interval, it
determines whether it should receive and process new tasks based on its memory usage. If the
memory usage exceeds its usage threshold, it redistributes outstanding tasks to other VMs and stops
receiving new tasks until the memory usage returns below the threshold.

EXAMPLE 4–6UsingPolling

pool.setUsageThreshold(myThreshold);

....

boolean lowMemory = false;

Detecting LowMemory

Java SEMonitoring andManagement Guide • October 200672

EXAMPLE 4–6UsingPolling (Continued)

while (true) {

if (pool.isUsageThresholdExceeded()) {

lowMemory = true;

redistributeTasks(); // redistribute tasks to other VMs

stopReceivingTasks(); // stop receiving new tasks

} else {

if (lowMemory) { // resume receiving tasks

lowMemory = false;

resumeReceivingTasks();

}

// processing outstanding task

...

}

// sleep for sometime

try {

Thread.sleep(sometime);

} catch (InterruptedException e) {

...

}

}

Example 4–6 does not differentiate the case in which the memory usage has temporarily dropped
below the usage threshold from the case in which the memory usage remains above the threshold
between two iterations. You can use the usage threshold count returned by
getUsageThresholdCount() to determine if the memory usage has returned below the threshold
between two polls.

To test the collection usage threshold instead, you use the
isCollectionUsageThresholdSupported(), isCollectionThresholdExceeded() and
getCollectionUsageThreshold()methods in the same way as above.

ThresholdNotifications
When the MemoryMXBean detects that a memory pool has reached or exceeded its usage threshold, it
emits a usage threshold exceeded notification. The MemoryMXBeanwill not issue another usage
threshold exceeded notification until the usage has fallen below the threshold and then exceeded it
again. Similarly, when the memory usage after garbage collection exceeds the collection usage
threshold, the MemoryMXBean emits a collection usage threshold exceeded notification.

Example 4–7 implements the same logic as Example 4–6, but uses usage threshold notification to
detect low memory conditions. Upon receiving a notification, the listener notifies another thread to
perform actions such as redistributing outstanding tasks, refusing to accept new tasks, or allowing
new tasks to be accepted again.

Detecting LowMemory

Chapter 4 • Using the PlatformMBean Server and PlatformMXBeans 73

In general, you should design the handleNotificationmethod to do a minimal amount of work, to
avoid causing delay in delivering subsequent notifications. You should perform time-consuming
actions in a separate thread. Since multiple threads can concurrently invoke the notification listener,
the listener should synchronize the tasks it performs properly.

EXAMPLE 4–7UsingThresholdNotifications

class MyListener implements javax.management.NotificationListener {

public void handleNotification(Notification notification, Object handback) {

String notifType = notification.getType();

if (notifType.equals(MemoryNotificationInfo.MEMORY_THRESHOLD_EXCEEDED)) {

// potential low memory, redistribute tasks to other VMs & stop receiving new tasks.

lowMemory = true;

notifyAnotherThread(lowMemory);

}

}

}

// Register MyListener with MemoryMXBean

MemoryMXBean mbean = ManagementFactory.getMemoryMXBean();

NotificationEmitter emitter = (NotificationEmitter) mbean;

MyListener listener = new MyListener();

emitter.addNotificationListener(listener, null, null);

Assuming this memory pool supports a usage threshold, you can set the threshold to some value
(representing a number of bytes), above which the application will not accept new tasks.

pool.setUsageThreshold(myThreshold);

After this point, usage threshold detection is enabled and MyListenerwill handle notification.

Detecting LowMemory

Java SEMonitoring andManagement Guide • October 200674

SNMPMonitoring andManagement

The Simple Network Management Protocol (SNMP) is an industry standard for network
management. Objects managed by SNMPare arranged in management information bases (MIBs).
The SNMPagent publishes the standard MIB for the Java virtual machine (Java VM)
instrumentation. The standard MIB for monitoring and management of the Java VM is available for
download at
http://java.sun.com/javase/6/docs/jre/api/management/JVM-MANAGEMENT-MIB.mib.

Enabling the SNMPAgent
To monitor a Java VM with SNMPyou must first enable an SNMPagent when you start the Java VM.
You can enable the SNMPagent for either a single-user environment or a multiple-user
environment. Then, you can monitor the Java VM with an SNMP-compliant tool.

For general information on setting system properties when you start the Java VM, see “Setting
System Properties” on page 17 in Chapter 2. How to enable the SNMPagent in single and
multiple-user environments is described below. The process is the same for both environments, but
the actions performed are slightly different.

Access Control List File
AnAccess Control List (ACL) template file is provided with the Java Platform, Standard Edition
(Java SE platform) in JRE_HOME/lib/management/snmp.acl.template, where JRE_HOME is the
directory in which the Java Runtime Environment (JRE) implementation is installed. You will copy
this file to either JRE_HOME/lib/management/snmp.acl or to your home directory, depending on
whether you are operating in a single or a multiple-user environment. Ensure that only you have read
permissions, since the file contains non-encrypted SNMP community strings. For security reasons,
the system checks that only the owner has read permissions on the file and exits with an error if this is
not the case. Thus, in a multiple-user environment, you should put this file in private location, such
as your home directory.

Example 5–1 shows some possible entries in anACLfile.

5C H A P T E R 5

75

http://java.sun.com/javase/6/docs/jre/api/management/JVM-MANAGEMENT-MIB.mib

EXAMPLE 5–1 SampleACLEntries

#The communities public and private are allowed access from the local host.

acl = {

{

communities = public, private

access = read-only

managers = localhost

}

}

Traps are sent to localhost only

trap = {

{

trap-community = public

hosts = localhost

}

}

� ToEnable the SNMPAgent in a Single-user
Environment
Set the following systempropertywhen you start the Java VM.
com.sun.management.snmp.port=portNum

In the property above, portNum is the port number to use for monitoring. Setting this property starts
an SNMPagent that listens on the specified port number for incoming SNMP requests.

Create anACLFile.
Copy theACL template file from JRE_HOME/lib/management/snmp.acl.template to
JRE_HOME/lib/management/snmp.acl.

Set the permissions on theACLfile.
Make sure theACLfile is readable by only the owner, and add community strings as needed.

� ToEnable the SNMPAgent in aMultiple-user
Environment
Set the following systempropertieswhen you start the Java VM.
com.sun.management.snmp.port=portNum

com.sun.management.snmp.acl.file=ACLFilePath

Where ACLFilePath is the path to theACLfile.

1

2

3

1

Enabling the SNMPAgent

Java SEMonitoring andManagement Guide • October 200676

Create anACLFile.

Copy theACL template file from JRE_HOME/lib/management/snmp.acl.template to a file named
snmp.acl in your home directory.

Set the permissions on theACLfile.

Make sure theACLfile is readable by only the owner, and add community strings as needed.

SNMPMonitoring andManagement Properties
You can set SNMPmonitoring and management properties in a configuration file or on the
command line. Properties specified on the command line override properties in a configuration file.
The default location for the configuration file is
JRE_HOME/lib/management/management.properties. The Java VM reads this file if the
command-line property com.sun.management.snmp.port is set.

You can specify a different location for the configuration file with the following command-line
option.

com.sun.management.config.file=ConfigFilePath

In the property above, ConfigFilePath is the path to the configuration file.

You must specify all system properties when you start the Java VM.After the Java VM has started,
any changes to system properties (for example, via the setPropertymethod), to the password file, to
theACLfile, or to the configuration file will have no effect.

Table 5–1 describes all the SNMPmanagement properties.

TABLE 5–1 SNMPmonitoring andmanagement Properties

PropertyName Description Default

com.sun.management.snmp.trap Remote port to which the SNMP
agent sends traps.

162

com.sun.management.snmp.

interface

Optional. The local host
InetAddress, to force the SNMP
agent to bind to the given
InetAddress. This is for
multi-home hosts if one wants to
listen to a specific subnet only.

Not applicable

com.sun.management.snmp.acl Enables or disables SNMPACL
checks.

true

2

3

SNMPMonitoring andManagement Properties

Chapter 5 • SNMPMonitoring andManagement 77

TABLE 5–1 SNMPmonitoring andmanagement Properties (Continued)
PropertyName Description Default

com.sun.management.snmp.

acl.file

Path to a validACLfile.After the
Java VM has started, modifying the
ACLfile has no effect.

JRE_HOME/lib/management/snmp.acl

Configuration Errors
If any errors occur during start up of the SNMPagent, the Java VM will throw an exception and exit.
Configuration errors include the following.

� Failure to bind to the port number.
� The password file is readable by anyone other than the owner.
� Invalid SNMPACLfile.

If your application runs a security manager, then additional permissions are required in the security
permissions file.

SNMPMonitoring andManagement Properties

Java SEMonitoring andManagement Guide • October 200678

Additional Security Information ForMicrosoft
Windows

How toSecure aPassword File onMicrosoftWindowsSystems
For remote monitoring and management, password and access files are used to control security. How
to set the file permissions for a password file is described for Solaris and Linux platforms in “Using
Password andAccess Files” on page 24 in Chapter 2.

This appendix describes how to set the file permissions of the password file on a Windows system
using a New Technology File System (NTFS) so that only the owner has read and write permissions
on this file. If the file system is a FileAllocation Table (FAT) 32 system, then security is not supported
for this file system and the password file cannot be secured.

Securing a password file is done differently in the different versions of Windows XP. Solutions for
both Windows XPProfessional Edition and Windows XPHome Edition are provided in this
appendix.

� ToSecure aPassword File onWindowsXPProfessional
Edition
The procedure given below will not work if you are running Windows XPHome Edition, which does
not allow you to change file permissions graphically.Asolution is given in “To Secure a Password File
on Windows XPHome Edition” on page 86 below.

Note –The solution using the cacls command described in “To Secure a Password File on Windows
XPHome Edition” on page 86 can also be used on Windows XPProfessional Edition, as a
command-line alternative to using the graphical interfaces.

InWindows Explorer, navigate to the directory containing the jmxremote.password file.

Right-click on the jmxremote.password file and select thePropertiesoption.

AA P P E N D I X A

1

2

79

Select the Security tab

If you are using Windows XPProfessional Edition and the computer is not part of a domain, then the
Security tab will not be automatically visible. To reveal the Security tab, you must perform the
following steps.

a. OpenWindows Explorer, and chooseFolder Options from the Toolsmenu.

3

How to Secure a Password File onMicrosoftWindows Systems

Java SEMonitoring andManagement Guide • October 200680

b. Select the View tab and scroll to the bottomof theAdvanced Settings and clear theUse Simple
File Sharing check box.

c. ClickOK to apply the change.

d. RestartWindows Explorer.

The Security tab will now be visible

Select theAdvancedbutton in the Security tab.4

How to Secure a Password File onMicrosoftWindows Systems

AppendixA • Additional Security Information ForMicrosoftWindows 81

Select theOwner tab to check if the file ownermatches the user underwhich the Java VM is running.5

How to Secure a Password File onMicrosoftWindows Systems

Java SEMonitoring andManagement Guide • October 200682

Select the Permissions tab to set the permissions.

If there are permission entries inherited from a parent directory that allow users or groups other than
the owner access to the file, then clear the "Inherit from parent the permission entries that apply to
child objects" checkbox.

6

How to Secure a Password File onMicrosoftWindows Systems

AppendixA • Additional Security Information ForMicrosoftWindows 83

Adialog boxwill ask if the inherited permissions should be copied from theparent or removed. Press
the Copybutton.

7

How to Secure a Password File onMicrosoftWindows Systems

Java SEMonitoring andManagement Guide • October 200684

Remove all permission entries that grant access to users or groups other than the file owner.

Do this by clicking the user or group and pressing the Remove button for all users and groups except
the file owner.

8

How to Secure a Password File onMicrosoftWindows Systems

AppendixA • Additional Security Information ForMicrosoftWindows 85

Now there should be a single permission entry which grants Full Control to the owner.

PressOK to apply the file security change.

The password file is now secure and can only be accessed by the owner.

PressOK in the jmxremote.password Properties dialog.

� ToSecure aPassword File onWindowsXPHome
Edition
As stated above, Windows XPHome Edition does not allow you to set file permissions graphically.
However, you can set permissions using the cacls command.

Open a commandpromptwindow.

Run the following command

C:\MyPasswordFile>cacls jmxremote.password

This command displays the access control list (ACL) of the jmxremote.password file.

9

10

1

2

How to Secure a Password File onMicrosoftWindows Systems

Java SEMonitoring andManagement Guide • October 200686

Set the access rights so that only your usernamehas read access.

When no users have been configured on the machine the default username is usually Owner, or a
localized translation of Owner.
C:\MyPasswordFile>cacls jmxremote.password /P Owner:R

This command grants access to the user Ownerwith read-only permission, where Owner is the owner
of the jmxremote.password file.

Display theACLagain.
C:\MyPasswordFile>cacls jmxremote.password

This time, you will see that only the Owner has access to the password file.

3

4

How to Secure a Password File onMicrosoftWindows Systems

AppendixA • Additional Security Information ForMicrosoftWindows 87

88

	Java SE Monitoring and Management Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Third-Party Web Site References
	Documentation, Support, and Training
	Typographic Conventions
	Shell Prompts in Command Examples

	Overview of Java SE Monitoring and Management
	Key Monitoring and Management Features
	Java VM Instrumentation
	Monitoring and Management API
	Monitoring and Management Tools
	Java Management Extensions (JMX) Technology
	What are MBeans?
	MBean Server
	Creating and Registering MBeans
	Instrumenting Applications

	Platform MXBeans
	Platform MBean Server

	Monitoring and Management Using JMX Technology
	Setting System Properties
	Enabling the Out-of-the-Box Management
	Local Monitoring and Management
	Local Monitoring and Management Using JConsole

	Remote Monitoring and Management
	Using Password Authentication
	To Set up a Single-User Environment
	To Set up a Multiple-User Environment

	Disabling Password Authentication
	Using SSL
	To Set up SSL

	Enabling RMI Registry Authentication
	Enabling SSL Client Authentication
	Disabling SSL
	Disabling Security
	Remote Monitoring with JConsole
	Remote Monitoring with JConsole with SSL Disabled
	Remote Monitoring with JConsole with SSL Enabled

	Using Password and Access Files
	Password Files
	Access Files

	Out-of-the-Box Monitoring and Management Properties
	Configuration Errors

	Connecting to the JMX Agent Programmatically
	Setting up Monitoring and Management Programmatically

	Mimicking Out-of-the-Box Management Using the JMX Remote API
	Example of Mimicking Out-of-the-Box Management
	Monitoring Applications through a Firewall
	Using an Agent Class to Instrument an Application
	Creating an Agent Class to Instrument an Application

	Using JConsole
	Starting JConsole
	Command Syntax
	Setting up Local Monitoring
	Setting up Remote Monitoring
	Setting up Secure Remote Monitoring

	Connecting to a JMX Agent
	Dynamic Attach
	Connecting JConsole to a Local Process
	Connecting JConsole to a Remote Process
	Connecting Using a JMX Service URL

	Presenting the JConsole Tabs
	Viewing Overview Information
	Saving Chart Data

	Monitoring Memory Consumption
	Heap and Non-Heap Memory
	Memory Pools and Memory Managers
	Garbage Collection

	Monitoring Thread Use
	Detecting Deadlocked Threads

	Monitoring Class Loading
	Viewing VM Information
	Monitoring and Managing MBeans
	Constructing the MBean Tree
	MBean Attributes
	MBean Operations
	MBean Notifications
	HotSpot Diagnostic MXBean

	Creating Custom Tabs

	Using the Platform MBean Server and Platform MXBeans
	Using the Platform MBean Server
	Accessing Platform MXBeans
	Accessing Platform MXBeans via the ManagementFactory Class
	Accessing Platform MXBeans via an MXBean Proxy
	Accessing Platform MXBeans via the MBeanServerConnection Class

	Using Sun Microsystems' Platform Extension
	Accessing MXBean Attributes Directly
	Accessing MXBean Attributes via MBeanServerConnection

	Monitoring Thread Contention and CPU Time
	Managing the Operating System
	Logging Management
	Detecting Low Memory
	Memory Thresholds
	Usage Threshold
	Collection Usage Threshold
	Memory MXBean
	Memory Pool MXBean

	Polling
	Threshold Notifications

	SNMP Monitoring and Management
	Enabling the SNMP Agent
	Access Control List File
	To Enable the SNMP Agent in a Single-user Environment
	To Enable the SNMP Agent in a Multiple-user Environment

	SNMP Monitoring and Management Properties
	Configuration Errors

	Additional Security Information For Microsoft Windows
	How to Secure a Password File on Microsoft Windows Systems
	To Secure a Password File on Windows XP Professional Edition
	To Secure a Password File on Windows XP Home Edition

