
CS1000
An Introductory Manual to the Unix Operating System

and the Computer Sciences Department’s Instructional

Computing Environment

Computer Systems Laboratory

Computer Sciences Department

University of Wisconsin, Madison

Spring 2008

Preface

The Computer Systems Laboratory distributes CS1000 to assist users new
to the Unix environment at the University of Wisconsin.

CS1000 was first created by Brian Pinkerton and Tom Christiansen. It
was later revised by Nichole Wolfe and endured many corrections from Mitali
Libeck. Brent Halsey cannibalized it and converted it to LATEX. Mike Bloy
and Ryan Fruit started from scratch on the LATEX source and cleaned it
up. Becky Solomon, Nick Petska, Jacob Ela, the notorious Mick Beaver,
and Peter Koczan all made drastic overhauls to bring the content out of the
stone age.

Although much care has been taken putting this together, it is possible
that some mistakes got through or have been overlooked. If you do find any
mistakes, or would like to comment on this document, please send mail to
lab@cs.wisc.edu . Your feedback is very much appreciated.

World Wide Web

This document is also available via the World Wide Web. The HTML
version is at http://www.cs.wisc.edu/csl/cs1000/ and the PDF can
be downloaded from http://www.cs.wisc.edu/csl/cs1000.pdf . Other
URLs in this document will point to root documents, rather than to specific
documents within a site tree. This is because the Web is a mutable environ-
ment, and any links we put into a printed document may change as quickly
as the day of printing.

i

Conventions

The following typographic conventions are used in this book:

• Bold is used to draw attention to machine names and other labels you
will see. It is also used to highlight words for the first time.

• Italics are used to draw attention to filenames and command names.
It is also used to highlight important notes and points.

• Constant Width is used for code and screen examples.

• Constant Width Slant is used for user input in examples. It is also
used for electronic mail addresses and URLs.

References

By necessity, this document is relatively short and cannot be comprehensive.
The following other sources of information are recommended:

Computer Systems Lab Information and Documentation -
http://www.cs.wisc.edu/csl

The UNIX System Home Page - http://www.unix.org

Google - http://www.google.com

Learning the UNIX Operating System - Grace Todino, John Strang,
and Jerry Peek. O’Reilly & Associates, Inc.

UNIX for Dummies - John R. Levine & Margaret Levine Young. IDG

Books.

UNIX in a Nutshell - Daniel Gilly and staff. O’Reilly & Associates, Inc.

UNIX Power Tools - Jerry Peek, Tim O’Reilly, Mike Loukides and staff.
O’Reilly & Associates.

ii

Contents

1 Introduction 1
1.1 About This Document . 2
1.2 About Your Account . 2
1.3 The Systems Lab . 2

2 Getting Started 3
2.1 Logging In . 3
2.2 The Importance of Passwords 4
2.3 Tips on Choosing a Password 4
2.4 Logging In . 6
2.5 X Window System Environment / GNOME 6

2.5.1 When You First Log In 7
2.5.2 Window Operations 8
2.5.3 Copying Text . 8
2.5.4 Root Menu . 8
2.5.5 Panels . 8
2.5.6 Running Programs . 9
2.5.7 Account Status . 9
2.5.8 Logging Out . 9

2.6 Machine Availability . 11
2.7 Computer Room Etiquette . 11
2.8 Home Computers and SSH Use 11

3 Essential Topics 13
3.1 The Shell . 13
3.2 Control Characters . 14
3.3 Special Control Characters 14
3.4 Running Programs . 15
3.5 The File System . 16

iii

3.5.1 What can I do with a file? 16
3.5.2 What’s in a filename? 16
3.5.3 Pathnames . 17
3.5.4 Navigating the File System 18
3.5.5 Other’s Files . 19
3.5.6 File Management . 20
3.5.7 Disk Quotas . 20
3.5.8 Restoring Deleted Files 22

3.6 Shell Metacharacters . 22
3.7 World Wide Web and Mozilla Firefox 23
3.8 Electronic Mail and Mozilla Thunderbird 24

3.8.1 Reading Mail . 24
3.8.2 Composing Mail . 25
3.8.3 Managing Mail . 25

3.9 Editing Files with Emacs . 25
3.10 Printing . 26

4 Getting Help 28
4.1 Unix Manual Pages (the man command) 28
4.2 Other Sources of Help . 30

5 Advanced Topics 31
5.1 TAB Completion . 31
5.2 I/O Redirection . 32
5.3 Pipes . 33
5.4 Passwords . 33
5.5 Dotfiles . 33
5.6 File System . 33
5.7 Communication . 35
5.8 Miscellaneous Commands . 35

6 Quick Reference 36

iv

Chapter 1

Introduction

Welcome! This document, CS1000, is a primer designed to help you adjust
to the Computer Sciences Department’s Unix computing environment. Most
likely, you will also want to attend one of the Unix orientations given during
the first two weeks of classes.

UnixTM is an operating system, just like MS-DOSTM, Microsoft WindowsTM,
or MacOSTM. It runs on a wide range of computers. It is precisely this el-
ement of portability that has allowed Unix to become as widely used as it
is today. It has risen above its humble beginnings as a programmer’s toy
on an old minicomputer to become the operating system of choice not only
at universities and other research facilities, but also on computers ranging
from huge mainframes to the microcomputers that professionals from many
fields use. Additionally, most courses you take from this department will be
taught using a computer that runs Unix of one flavor or another. For these
reasons, familiarity with Unix will aid you both in later life as a computer
professional, as well as with your assignments in this department.

Remember as you are reading and learning that nobody learns Unix in a
day. This document is by no means comprehensive and barely scratches the
surface of some of the more advanced topics and features in Unix. Fret not,
gentle newbie, for Unix, like anything worthwhile, takes time to learn and
even the most experienced users and hackers have gaps in their knowledge.
Be patient, have fun, and seek out help and answers where you can.

NOTE: References to the “demo01.cs.wisc.edu” computer or various com-

puter labs should be viewed only as examples. In the latter case, there may

or may not be a lab with computers of that name, as the lab names often

change and get recycled.

1

1.1 About This Document

• Chapter 1 is this Introduction. You’re reading it right now.

• Chapter 2 of this document will lead you through logging on for the
first time.

• Chapter 3, by far the longest chapter, will cover the essential things
about the interface that you need to know.

• Chapter 4 covers the various ways of getting help from the system.

• Chapter 5 covers some advanced topics that may come in handy.

• Chapter 6 is a Quick Reference to commands covered elsewhere in the
document.

1.2 About Your Account

You are reading this document because you have an account on the UW-
Madison Computer Sciences Department’s instructional Unix workstations.
This account gives you access to email, a place to put a web page, disk space,
and access to information. This account is seperate from your DoIT Wisc-
World account. We hope that the experience will prove both enlightening
and fun.

1.3 The Systems Lab

The Computer Systems Lab, known as the CSL, maintains and operates
a wide variety of systems for instructional and research use for the Com-
puter Sciences Department at the UW-Madison. Its staff of undergraduate
and graduate students and full-time professionals performs file backups and
restorations, installs new systems, corrects bugs in existing software, and de-
velops new software. The CSL should never be used as a substitute for your
TA, instructor, or a Unix consultant stationed in the user rooms. Only mat-
ters pertaining to the functioning, administration, or maintenance of system
hardware or software should be brought to the attention of the CSL. The
CSL, located in room 2350, is open Monday through Friday from 8:00am to
noon and 1:00pm to 5:00pm, with limited evening and weekend coverage.

2

Chapter 2

Getting Started

First, you need to find a workstation on which accounts have been provided
for your course. Your instructor should tell you which room(s) to go to, or
check the public notices on the first floor of the Computer Science building.
If your course is not assigned to the Unix workstations, you should log in
on a Windows XP workstation elsewhere in the building.

Find the room where you are supposed to do your classwork, then find a
computer that is not in use. The login serves two roles: the banner identifies
the hostname of the computer you are using; the login prompt provides
authenticated access to the computer. Your login name is the unique name
by which you are publicly known to the system. This name is usually just
your first or last name, or some combination thereof.

2.1 Logging In

If this is your first computer science course, or if you have gone a semester
without taking a computer science course, you will need to complete a quick
self-registration. The instructions for this are posted in the computer labs
themselves, and are also done with supervision during the CSL Unix Orien-
tation sessions.

After you have completed the registration process for new users, you will
be able to login using your own login name and password. Note that when
you type your password, no characters will be printed on the screen. This is
a security precaution to prevent people from finding out your password as
you type it in. If you have an existing account from last semester, you may
immediately log in with your previous login name and password. If you do
not remember your password you should contact the CSL by sending email

3

to lab@cs.wisc.edu to reset your password.

2.2 The Importance of Passwords

It is very important that you choose a password that is hard to guess and
that you keep this password a secret. Your password is the key to your
account, and anyone who knows it has complete access to all of your files.

Under absolutely no circumstances should it ever become nec-
essary for you to tell anyone your password. No one, including the
system administrators, will ever have a legitimate reason to ask for your
password. Therefore, if someone does ask for your password, you should
never give it to them. Further, you should report anyone trying to get this
information to the CSL by sending email to lab@cs.wisc.edu . Nor is it
ever necessary for you to know someone else’s password. In fact, use of
someone else’s login and password may result in loss of computing privileges
for both of you. If you are working on a project with a partner, then you
can use to set group access rights to share files. For more information see
section 5.6.

If you ever suspect that someone else has used or is using your account,
you should notify the CSL (Computer Systems Lab) immediately. To no-
tify the CSL, mail lab@cs.wisc.edu . This is very important because the
intruder could use up your printer quota, send email as you, or steal your
programs and turn them in with his or her name on them. If this happens
and this is noticed, the instructor is likely to hold both of the involved par-
ties accountable for the plagiarism, as it may not be clear who stole what
from whom.

2.3 Tips on Choosing a Password

The computer system enforces some rules designed to assure high-quality
passwords. These rules may make it a bit hard to choose your first password.

The current rules for passwords are:

• Must be at least 8 characters long

• Must contain at least 1 character from each of at least 3 different
character classes. The character classes are:

– lowercase letters

– uppercase letters

4

– numbers

– punctuation

• Must not appear to be systematic (“abcdef” will be rejected).

• Must not be based on anything that the system knows about you.
(name, login, userid, etc.)

• Must not be based on a dictionary word or a reversed dictionary word.
A complete word as a substring will cause a password to be rejected.

These rules are based on crack, a widely available (and widely used)
password guessing program. In addition to the above rules, consider the
following:

• Mix UPPER and lower case letters

• Include punctuation marks. Using an exclamation point (!) or a pe-
riod(.) at the end of your password is less secure, simply because
everyone does at the end of phrases.

• One common scheme is to use letters from a phrase. For example,
the phrase choose a good password might become the password CagP

(mixing upper and lower case). Of course, this password is not good,
because it is too short, has only letters, is easy to guess, and is written
in this document. If you do use this scheme, don’t use a phrase that
is easy to guess (such as your favorite saying or the first line of your
favorite song).

• Another common scheme is to start with two or more unrelated words,
and abbreviate or mangle them in some manner, so that no part will
be in the dictionary. Make sure the two words aren’t easily guessable.

• Use symbols to represent some of the words in a chosen phrase.

Bad ideas for your password include the following list, and anything
based on ideas from the following list:

• Your phone number or any phone number associated with you, such
as your significant other’s.

• Birthdays of you or anyone associated with you.

• Addresses of you or anyone associated with you.

5

• Nicknames of you or anyone associated with you.

• Hometowns of you or anyone associated with you.

• Names of loved ones, pets, etc.

• Any number associated with you (social security, bank account, driver’s
license, license plate, etc.).

• Any famous personality (rock stars, sports players, teams, or mascots)
that you can call you ‘favorite’ or that people know you like.

2.4 Logging In

After you have successfully entered your login name and password, the sys-
tem will log you in. By default, you will see three icons on the left side of
the screen, and bars or “panels” at the top and bottom of the screen. More
detail will be given about these in the next sections.

2.5 X Window System Environment / GNOME

Unix uses the X Windows system to provide a graphical user interface
(or GUI). The default CSL-supported desktop is GNOME. GNOME is
a powerful, user-friendly, fully-featured desktop environment that is very
similar to the interfaces used by Windows or Mac OS. Users who are familiar
with these operating systems and GUIs find GNOME very familiar and
intuitive.

Once you are logged in, you should see a window in the upper left-hand
corner of the screen with something like [bbadger@demo01] (1)$ inside
of it. This is called your prompt and means that the computer is waiting
for you to type a command. The prompt is in a window called an terminal
emulator, specifically GNOME Terminal, which emulates a text-only ter-
minal in a windowing environment. More information will be given about
this later. Unlike other windowing environments you may be familiar with,
Unix is more command-line oriented. This means that the Terminal is one
of the most common ways of communicating with the computer. You’ll
more than likely have a different hostname than demo01 and a different
login than bbadger. This is fine, as this material applies to all CSL Unix
machines and all who use them. All the things you see on your screen, as
well as all the things you can do to manipulate the image of your screen is

6

called your environment. This environment has been carefully designed to
be the easiest to use during your introductory computing classes.

2.5.1 When You First Log In

After you log in, you should see three icons by default: Computer, [your
login]’s home, and Trash. Double-clicking on these icons with the left mouse
button will open a GUI file browser to the appropriate place in the file
system. The computer will allow you to browse parts of the file system
to which you have access, [your login]’s home will let you browse files in
your home directory, and Trash will allow you to see files deleted by the file
browser and recover them for a short time.

At the top and bottom of your screen are panels, which can hold menus,
program launchers, and a wealth of other features. By default, the layout of
the top panel is as follows. In the top-left corner lie the Applications menu,
which allows you to run a variety of programs and change some settings,
and the Actions menu, which allows you to search for documents and log
out, among other things. Please keep in mind that the CSL does not fully
support all of the software available to users.

To the right of these menus are program launchers, which will launch
the standard CSL supported web browser, email client, and office software
when clicked. The upper-right corner contains a clock and volume control
icon.

The bottom panel maintains a list of currently running program win-
dows. Clicking on any given entry in the list will bring the respective win-
dow and program to the front of the desktop and make it the focus of the
window manager. There is also a button in the lower-left corner that will
hide or restore all windows when clicked.

In the lower-right corner of the bottom panel is the Workspace Switcher.
This powerful tool allows you to have windows on multiple virtual desk-
tops and switch between said desktops. For instance, you could have a
web browser on desktop 1, an email client on desktop 2, your programming
projects on desktop 3, and other random programs on desktop 4. Simply
click on the small desktops in the switcher to change between them. You
can even change a window’s desktop by dragging it between the screens with
the left mouse button.

7

2.5.2 Window Operations

Manipulating a window’s size, shape, and location in GNOME is remarkably
similar to Windows and Mac OS. Dragging on any part of the frame or
border with the left mouse button of the window allows you change its size
and shape. You can move windows around by dragging on the title bar
(the bar across the top of the window).

In addition, the upper-right corner of the window contains buttons to
minimize, maximize, and close windows. These operations can also be se-
lected from the window menu in the upper-left corner of the window.

2.5.3 Copying Text

Another feature of your environment is the ability to copy text between
windows. This works differently than Windows or Mac OS. By highlighting
an area of text, said text gets stored into a memory buffer. You can copy
this buffer to another place in the current window or a different window by
pressing the middle mouse button (the scroll wheel in most cases).

2.5.4 Root Menu

By clicking on the desktop (anywhere a window or icon does not currently
exist) with the right mouse button, a menu appears that allows you to
open shell terminals to enter other commands, create directories, program
launchers, and files on your desktop, or even change your desktop back-
ground. This is called the root menu. Any directoies, launchers, and files
on your desktop appear in the “Desktop” directory in your home directory.

2.5.5 Panels

By default, you have seen many useful things that panels can have. You can
add many useful and fun features to panels by clicking on an empty part of
the panel with the right mouse button and selecting “Add to Panel...”

Additionally, you can edit, move, or remove items in a panel by right-
clicking on the item in question and selecting the appropriate option. There
are other options to create, remove, or modify entire panels. Please be
careful when doing this so you do not accidentally delete important cus-
tomizations or clutter up your desktop.

NOTE: The more customizations you add to your desktop, and the more
files, directories, and launchers you add to your desktop, the slower GNOME
will become, especially for logging in. It will also count against your disk

8

quota. While you are free to customize your desktop, please exercise mod-
eration.

2.5.6 Running Programs

Before all the features of the X Window System will seem useful, you will
probably want to run an actual program. The easiest way to run a program
is to simply click on a launcher in a panel or on the desktop. However,
launchers may not exist for all programs you would like to use, and it may
not be practical to create all those launchers. The other way, which is easy,
is to type the name of the program you would like to run in a terminal (bring
up the root menu and select “Open Terminal” to bring up a terminal) and
hit [Enter].

For example, typing firefox at the prompt will run the Firefox web
browser. You can use Firefox to access information scattered about the
Internet. In particular, the Computer Sciences department has a web site
containing much information at http://www.cs.wisc.edu . The CSL also
maintains a web site at http://www.cs.wisc.edu/csl .

2.5.7 Account Status

To check your disk usage, printing quota, and anything in the “Message of
the Day” file (also called the motd, located in /etc/motd), open a terminal
and run the Xstats programs. A typical Xstats window can be seen in
figure 2.1

2.5.8 Logging Out

Under Unix, it is very important to log out before you leave a computer. If
you do not, anyone can come along and access your files, send mail as you,
or use your paper or disk quotas.

It is better to exit from all programs before you log out. Some programs,
such as Firefox or Thunderbird, protest the type of shut down caused by
you logging out.

When on a workstation with an X environment, to logout, select “Log
Out” under the “Actions” menu. Click on OK to verify that you indeed
want to log out. Please note that selecting “Restart” or “Shut Down” will
merely give you an error and then log you out. Please only use “Log out.”

For your own protection, it is important that you remember to logout.
Typing exit or logout in all the windows will not log you out of your ac-
count. You know you have logged out of your account when the login screen

9

Disk Quota Information:

Volume Name Quota Used % Used Partition

u.bbadger 200000 125072 62% 65%

Paper Quota Information:

User Quota Printed

badger 300 24

Message of the Day:

===

REMINDER: NO FOOD or DRINK IN THE CS INSTRUCTIONAL COMPUTER LABS

NEVER POWER DOWN WORKSTATIONS IN THE COMPUTER LABS

===

Figure 2.1: A typical Message of the Day window

10

reappears. If you don’t logout, someone can sit down at the workstation
you have abandoned and access all of your files. Be aware that if the system
should crash while you are logged in, you will no longer be logged in when
it comes back up. Consequently, there is no need for you to wait around for
the workstation to restart so that you can logout.

2.6 Machine Availability

All instructional Unix workstations run by the CSL are available in the labs,
from approximately 7:00am to 1:00am, seven days a week. The machines
are actually on 24 hours a day, so you can connect remotely at any time,
but beware that they are rebooted some nights around 3:00am. The CSL’s
primary objective is to keep these workstations in a usable state all the
time. To further this goal, the CSL occasionally needs exclusive access to a
machine, rendering it unavailable. Machine downtime will be advertised in
the message of the day (/etc/motd), which appears when you run Xstats,
and also in msgs with at least 24 hours advance notice.

2.7 Computer Room Etiquette

The computer rooms are a common resource and must be shared by many
people, and some of them are under an extreme amount of pressure. To en-
sure a reasonable working environment and that everyone’s equipment stays
in reasonable working order, the CSL asks all users of the instructional labs
to observe a few simple rules of common courtesy. These include prohibi-
tions against drinking, smoking, eating, and loud music in the instructional
labs. If you bring a portable music player, you must use headphones to listen
to it so as not to disturb others. These are further detailed in the Account
Policy Form which all students will be asked to read when setting up their
account. You can review the CSL’s policies regarding use of the instruc-
tional machines on the web at http://www.cs.wisc.edu/csl . Violation of

these rules can result in the suspension of your account.

2.8 Home Computers and SSH Use

You can access the CSL Instructional Unix workstations from any computer
that is connected to the Internet. The best way to do that is with an SSH
client. SSH is a secure remote-access program. An SSH client is included

11

in the WiscWorld software package distributed on campus by DoIT. SSH
clients are also available from various sources on the net.

If you have problem getting your home computer set up, the CSL will not

be able to help you. For this type of problem, go to the DoIT helpdesk. The
phone number for the DoIT helpdesk is 264-HELP or 264-4357 . However,
the CSL does maintain an FAQ to help you with home configurations at
http://www.cs.wisc.edu/csl , but this is as far as the CSL can support
home configurations.

The current instructional workstation names, locations, and operating
systems are listed on http://www.cs.wisc.edu/csl . You can log on to any
of the workstations with Unix or Linux listed as the operating system. Fur-
ther, you can use best-<computer>.cs.wisc.edu to select the computer
with a name like <computer>##.cs.wisc.edu with the lowest load. For ex-
ample, you could log in to best-demo.cs.wisc.edu. If demo01.cs.wisc.edu
has the lowest load among the demo##.cs.wisc.edu computers, you will
automatically be logged in to demo01.cs.wisc.edu. Finally, logging into
best-linux.cs.wisc.edu will log you into the instructional Unix/Linux
computer with the lowest load.

12

Chapter 3

Essential Topics

This chapter describes nearly everything you will need to know to success-
fully complete your course work. It is a good idea to become comfortable
with all of the topics in this chapter as early as possible so that you are
not struggling with your environment while working on your assignments.
The best way to become comfortable with Unix, as with most any computer
topic, is to sit down at the computer and experiment. Use the information
here as a guide and don’t be afraid to try new things. Of course, you must
exercise caution with some commands such as rm, which removes files.

Each of these sections is a basic introduction to the variety of options
available to the described tools. It is almost a trademark of Unix to provide
a plethora of options to each available command. To learn more about each
tool, consult chapter 4 Getting Help for ideas of where to look. Among other
things, this chapter explains the commonly used and verbose man program.
Some topics are also further covered in Chapter 5, Advanced Topics.

3.1 The Shell

In Unix the shell is a program which prompts the user and directs the
operating system to do what the user wants. When you login to your account
or open a new terminal, you see a prompt like [bbadger@demo01] (1)$.
This means that the shell is waiting for you to type a command. The shell
is not Unix (and neither is X windows). It is merely a user interface to Unix
and a program like any other. However, it is essential to know this user
interface to become proficient in Unix.

Your user account is configured with tcsh, an enhanced version of the
Berkeley UNIX C shell, csh. If you would like to use one of the many

13

alternate shells, you can use the chsh command to change the shell your
account uses.

The shell is a very powerful tool that can be customized. Using just
tcsh, new commands can be created, old ones altered, input and output files
dynamically redefined, and even entire programs written without ever using
a compiler. Chapter 5 contains a number of useful hints to get more out of
the shell. Consult the manual page for tcsh (see chapter 4, Getting Help)
for more information on the many features.

3.2 Control Characters

As you’ve likely encountered, computer keyboards rarely have similar layouts
beyond the standard “typewriter” set. Control characters provide many
functions such as editing, program control, and output control. Occasionally,
a keyboard might not include common special keys. If this is the case, you
will need to know a few of the following control characters. These control
characters are summarized in table 3.1

To use a control character, simultaneously hold the CTRL key and
press another key. The combination is usually written with the CTRL key
being represented as a caret (ˆ). You might notice on some keyboards that
backspace produces a ^? instead of deleting the character to the left. If this
happens, you will need to use ˆH to back up a letter. If you’d like to erase
the previous word, use ˆW, and to erase the whole line, use ˆU.

3.3 Special Control Characters

There are a number of other control characters that you can type that
perform special functions. They are summarized in table 3.1. For example, if
your program is caught in an infinite loop, you can kill the running program
by typing a ˆC. You can also kill the program using a ˆ\. This makes the
system create a file for you, called core, which is an image of the running
program. You may want look at this to do postmortem debugging with the
gdb debugger in order to find out what went wrong with the program, but
you will want to remove the core file when you are finished because it takes
up a lot of disk space.

If a program is spewing output at you and you want it to pause for a
moment, but not kill the program, you can use ˆS to stop output scrolling
and ˆQ to continue it when you’re ready to read further. If you’re inputting

14

Control
Character Function

CTRL-h erase the last letter on this line
CTRL-w erase the last word on this line
CTRL-u erase the current line

CTRL-c kill a running program
CTRL-\ kill and dump core

CTRL-s suspend output
CTRL-q continue output

CTRL-d End of File (often EOF)

CTRL-z suspend program

Table 3.1: Common control characters

text to a program, the standard way of indicating the end of the text is with
the End of Transmission character ˆD.

3.4 Running Programs

To run a program you need to type in its name. Many programs accept fur-
ther information on the command line which modify their behavior. Most
commands take arguments and sometimes commands have several op-
tions or parameters available. Most often they are in the arrangement
of:

command [-parameters] argument1 argument2 ...

The brackets around the parameters indicate they are optional.
For example, if you want to see the names of the files in the current

directory, the ls command is used.
[bbadger@demo01] (1)$ ls

But if you want to view the contents of your public directory while in
your home directory, the directory name, public, must be supplied as an
argument.

[bbadger@demo01] (1)$ ls public

Many programs also accept flag parameters, indicated with a preceding
minus sign, which change the way the program works. These options gener-
ally precede other arguments, but this is not always the case. It depends on
the the specific program you are using. For example, ls doesn’t display all
the information known about files in a directory. However, if the -l option
is given, then more information is displayed.

15

[bbadger@demo01] (1)$ ls -l

Like most commands, ls takes many different parameters, which can be
combined together to yield various effects. However, keep in mind that
different programs may interpret different arguments as different options. To
some programs, -s might mean one thing, but to others it probably means
something completely different. You should always consult the manual page
on the specific program you wish to run for exactly what the various flags
do.

3.5 The File System

The file system provides a means to organize and store files on permanent
storage media (e.g. disks). A file is some collection of information. Files
may contain, for example, your latest program code, an email, a picture, or
a program. The first two of these are usually termed text files, while the
latter are called binary files. Programs are also referred to as executable
files. To Unix your file is merely a collection of characters. Be careful,
though, because binary files tend to lock up terminals and printers if you
try to display or print them.

3.5.1 What can I do with a file?

Many different operations are possible on files. In the course of writing a
Java program, you will likely want to

[bbadger@demo01] (1)$ emacs Prog1.java edit the program text
[bbadger@demo01] (1)$ javac Prog1.java compile the program
[bbadger@demo01] (1)$ java Prog1 and execute it
[bbadger@demo01] (1)$ lpr Prog1.java print the program
[bbadger@demo01] (1)$ rm output.data remove the output file

3.5.2 What’s in a filename?

Files must be named so that you can identify them to the system (these
names are appropriately called filenames). Filenames can be up to about
255 characters, although shorter names are recommended, and can contain
many different characters, although we suggest you stick to the standard
ones: letters, digits, underscores, dashes, and periods. Some typical file-
names are main.c, prog1.C, file.o, a.out, and main.

16

Suffix Meaning
.c C source code
.cc or .C C++ source code
.java Java source code
.html HTML markup
.o object code (not human readable)
.Z compressed file (use uncompress)
.gz gzipped file (use gunzip)
.tar tarred group of files (use tar)

Table 3.2: Common Suffixes

Note that filenames are case-sensitive; prog1.c is different than pRoG1.C.
This is an important thing to get used to, and may cause some confusion.

Filenames which contain shell metacharacters (that is, characters that
the shell interprets as something other than plain text) that also have spe-
cial meaning to the shell should be avoided, as well as spaces to prevent
confusion. For more information see section 3.6.

There are several conventions for naming files. For example, you may
have noticed above that the file containing the Java program was named
Prog1.java. The Java compiler expects its input from files whose names
end in .java. In general, a suffix designates a source file (program text)
and the absence thereof designates an executable. Table 3.2 has some of
the common suffixes. Note that, unlike in some other operating systems,
Unix does not associate a purpose or function based on a filename. Many
programs, however, do expect certain suffixes.

The file system separates users’ files using a concept called directories.
Directories are special files that can contain both files and more directo-
ries. Each user on the system has a home directory in which they may
create files and directories. Directories are hierarchically organized; that
is, a directory has a parent directory “above” it and may also have child
directories ‘below’ it. Similarly, each child directory can contain other files
and also other child directories. Because they are hierarchically organized,
directories provide a logical way to organize files. As you read through the
next section, refer to figure 3.1.

3.5.3 Pathnames

Files are uniquely named in the file system by specifying the path of direc-
tories to look in to find the file. For example, the file with the * in figure 3.1

17

Figure 3.1: A directory structure

bbadger

private

directory

file

key

mail

INBOX

public

.plan html

bbadger.html

letter cs367

Prog1.java

Prog1.class

*

/

is named

/u/b/b/bbadger/private/cs367/Prog1.java

This is its absolute path name. (The dashed line in figure 3.1 represents
skipped levels) Notice that we use the forward slash to separate directories
in the pathname.

So that you don’t need to type the whole path every time you want to
access a file, Unix has the concept of a current directory. When you
log in, your current directory is your home directory. Files in your current
directory may be specified without any pathname attached to the filename.
Files in directories below the current directory can be specified with that
part of the pathname that begins at the current directory (e.g. if Bob were in
his private directory, he could access Prog1.java with cs367/Prog1.java).
This is known as using a relative path name.

3.5.4 Navigating the File System

Two commands are useful to navigate the file system tree. They are pwd
(print (the name of) working directory) and cd (change directory). See the
examples below.

18

[bbadger@demo01] (1)$ cd change directory to your home directory
[bbadger@demo01] (1)$ pwd print the name of the current directory
/afs/cs.wisc.edu/u/b/b/bbadger

[bbadger@demo01] (1)$ cd cs367 oops, cs367 is not a subdirectory of
cs367: No such file or directory /afs/cs.wisc.edu/u/b/b/bbadger

[bbadger@demo01] (1)$ cd private/cs367 this is what we want
[bbadger@demo01] (1)$ ls list the current directory’s files & directories
Prog1.java Prog1.class

[bbadger@demo01] (1)$ cd .. ‘..’ means “the directory above the current
one” (the parent directory)

[bbadger@demo01] (1)$ pwd Now we’re back in the private directory,
/afs/cs.wisc.edu/u/b/b/bbadger/private

3.5.5 Other’s Files

So that you don’t have to type the complete path of someone’s home direc-
tory, the shell provides a shorthand for getting to people’s home directories:
the ˜ (tilde) character. Precede a user’s login name with the ˜ character
and the shell will expand it to the complete path name. In the special case
where you do not give a login name after the ˜, the shell will expand it to
your home directory, making cd ~ equivalent to cd .

[bbadger@demo01] (1)$ cd ~cs367-1 cd to cs367-1’s directory.
[bbadger@demo01] (1)$ ls

public/ private/

[bbadger@demo01] (1)$ cd private try to look at a protected directory
private: Permission denied

[bbadger@demo01] (1)$ pwd

/afs/cs.wisc.edu/p/course/cs367-1 still in this directory
[bbadger@demo01] (1)$ cd ~/private cd to your own private directory
[bbadger@demo01] (1)$ pwd

/afs/cs.wisc.edu/u/b/b/bbadger/private

[bbadger@demo01] (1)$ cd ~bucky cd to bucky’s home directory
[bbadger@demo01] (1)$ pwd

/afs/cs.wisc.edu/u/b/u/bucky

Please note that even though you can list the contents of someone’s
home directory, you cannot always access all these files. Files are protected
using AFS and Unix permissions. See chapter 5, Advanced Topics, for more
information.

19

3.5.6 File Management

The following is a summary of common UNIX commands used for file man-
agement. Most of the commands are self-explanatory, yet have more ad-
vanced options. See See chapter 4, Getting Help, and chapter 5, Advanced
Topics, for more information, or consult the man pages.

cat file1 file2 ... sends the contents of one or more text files to stan-
dard output (usually the screen). Be sure not to cat binary files. When
binary files are sent to the screen, the terminal tends to lock up.

less file1 file2 ... displays the contents of a file a screenful at a time.
SPACE or PAGEDOWN show the next screenful, b or PAGEUP
show the previous screenful, ENTER or ↓ show the next line, ↑ shows
the previous line, ? brings up a help list, and q quits viewing. The
name less is a pun on more, which is another pager with fewer features.
Thus, less is more (but better, more than more if you will).

cd path changes the current directory to path.

ls [dir] lists the files in dir or the current directory if no argument is
given.

pwd prints the name of the working (current) directory.

cp source destination copies a file from source to destination

mv source destination moves a file from source to destination.

rm file removes a file.

mkdir dir creates a directory of the name dir.

rmdir dir removes a directory of the name dir if it is empty.

3.5.7 Disk Quotas

There is a limited amount of disk space available, and this space must be
shared by all of the users. In an attempt to ensure that all students have
adequate space to complete their assignments, a disk quota system has been
put into effect. The quotas allotted to students should be sufficient to carry
out their programming assignments. However, if you create many extra files
or do not remove unnecessary files, you may exceed your quota.

20

When you login to your account, the quota command, fs listquota, is
automatically run for you and displayed in the Xstats box. This command
returns some statistics on your current disk usage:

[bbadger@demo01] (1)$ fs listquota

Volume Name Quota Used %Used Partition

u.bbadger 200000 125072 62% 65%

Each user is assigned a volume on the disk to store their files. Several
volumes are stored on each disk partition. The Quota field shows your
disk quota, that is, the amount of disk space, in kilobytes, that you are
alloted. The Used field indicates how many kilobytes of disk space you are
currently using. The %Used field shows what percentof your quota you are
currently using, and the Partition field shows what percent of the entire
partition is currently being used by all of the volumes stored on it. Do not
worry if you get a warning message saying the partition is nearly full. You
will still have the same alloted quota.

It is important to make sure that you do not exceed your disk quota.
If you should go over your disk quota (i.e. the Used field equals or exceeds
the Quota field), the quota system will not allow you to create any new files
until you reduce your disk usage. You can run the command fs listquota at
any time to see your current disk usage.

Guidelines for controlling your disk usage

• Remove core files. When your program exits abnormally, many times a
memory image of your program is saved into a file called core. When
this happens, you may see a message such as “Segmentation Fault
- core dumped”. A core file can be quite large (the size of all the
memory alotted to your program). They can be useful for debugging,
but remove them as soon as possible.

• Remove cache files. Your web browser’s cache can take up logs of
space. If you use Firefox, Select “Tools”, “Clear Private Data”, and
make sure “Cache” is selected when you click “Clear Private Data
Now”.

• If you don’t know what files are taking up your disk space, the com-
mand du displays the size of all of your directories and files. Large
files can be seen using the CSL-written-and-supported program lff.
You can type lff ˜ to see a list of large files and directories in your

21

Metacharacter Function

; seperates multiple commands on the same line
? matches any one character in a file name
∗ matches zero or more characters in a file name
& runs the preceding command in the background
\ nullifies the special meaning of the next metacharacter

Table 3.3: Common Metacharacters

home directory. Consult the manual page (type man lff) for more
information.

• Remove executable files that you are not currently using. Executables
can always be regenerated if you have the source code.

• If you are continually exceeding your quota, consider saving part or all
of your directory to CD-ROM. Instructions are available on the web.

3.5.8 Restoring Deleted Files

Every night around midnight, a “snapshot” is taken and saved of all files
and directories in your account. If you accidently remove a file, it may be
possible to get it back if it existed at the time of the snapshot.

To recover a file, type the command recover list to list the files avail-
able in the snapshot of the current directory, and recover fetch filename

to recover the file filename.
If the file is not in the snapshot, go to https://www-auth.cs.wisc.edu ,

click on “Continue to Web Forms” and fill out the “Restore Request Form”
to request that the CSL restore your file from backups.

3.6 Shell Metacharacters

There are a number of characters that have special meaning to the shell,
which is what makes them metacharacters. Note that meta- is a generic
prefix assuming different meanings for different programs. Be careful not
to confuse their meanings or confuse them with metakeys. Common tcsh
metacharacters are (! $ ˆ & * () ˜ [] \ — { } ’ ” ; ¡ ¿ ? [space] [tab]). The
metacharacters are explained further in the man page for tcsh. Table 3.3
contains very commonly used metacharacters.

As an example,

22

[bbadger@demo01] (1)$ ls file.*

run on a directory containing the files file, file.c, file.lst, and myfile would
list the files file.c and file.lst. However,

[bbadger@demo01] (1)$ ls file.?

run on the same directory would only list file.c because the ? only matches
one character, no more, no less. This can save you a great deal of typing time.
For example, if there is a file called california cornish hens with wild rice
and no other files whose names begin with ‘c’, you could view the file without
typing the whole name by typing this:

[bbadger@demo01] (1)$ more c*

because the c* matches that long file name.
Filenames containing metacharacters can pose many problems and should

never be intentionally created. If you do find that you’ve created a file with
metacharacters, and you would like to remove it, you have three options.
You may use wildcards to match metacharacter, use the \ to directly en-
ter the filename, or put the command in double quotes (except in the case
of double quotes within the file name, these must be captured with one of
the first two methods). For example, deleting a file named ‘*|more’ can be
accomplished with:

[bbadger@demo01] (1)$ rm ??more

or
[bbadger@demo01] (1)$ rm *\|more

or
[bbadger@demo01] (1)$ rm ‘‘*|more’’

3.7 World Wide Web and Mozilla Firefox

The CSL’s currently supported web browser is Mozilla Firefox. It is part of
the suite of Mozilla software. This brief introduction will highlight some of
Firefox’s unique features and how to manage your own Firefox settings.

To start Firefox, type firefox at the command prompt. If this is the
first time you have run Firefox under you Computer Science account, it may
take a while to initialize your settings. Once Firefox appears, you can see
the default layout, with menus, browse buttons, the address bar, and some
bookmarks at the top, as well as the status bar at the bottom, much like
other web browsers. There is also a built-in interface to search engines in
the upper-right corner of the Firefox window. Simply enter something in
this box and press Enter to query the appropriate search engine.

23

Firefox supports tabbed browsing. That is, multiple pages can be open
in the same window. When multiple pages are open, you will see tabs
representing each page just below the bookmarks. Click on a tab to go to
that page. To open a new tab in an existing window, select “New Tab” from
the “File” menu or click on a link with the right mouse button and select
“Open Link in New Tab”.

You can manage your Firefox settings by selecting “Preferences” from
the “Edit” menu. Here you can change how much space to use for the local
cache, how many days to keep history, your home page, and many other
options.

Please explore the Computer Science Department website and the CSL
website to find more information. Often, answers to common questions are
on these pages.

3.8 Electronic Mail and Mozilla Thunderbird

Email is available on all student accounts. Your Computer Science Depart-
ment email address is your login name followed by @cs.wisc.edu. Please note
that this email is different than your DoIT WiscWorld email account. The
CSL’s currently supported email client is Mozilla Thunderbird, another part
of the suite of Mozilla software, and will be briefly outlined in this section.

3.8.1 Reading Mail

To start Thunderbird, type thunderbird at the command prompt. If this
is the first time you have run Thunderbird under you Computer Science
account, check to ensure that the automatic account creation procedure
was completed successfully (there should be a <login>@cs.wisc.edu entry
in the left pane - if this is not present, consider mailing lab@cs.wisc.edu
from a different account to troubleshoot the problem). Click on the plus or
minus sign to the left of the account entry to expand or collapse the folder
hierarchy. When the view is expanded, click on “Inbox” to bring up a list
of messages which should then appear in the upper right pane. To read
a message, click on the message in the upper right pane; the text of the
message will subsequently appear in the lower right pane. If you desire to
reply to a message, highlight the message and click on the “Reply” icon in
the toolbar.

24

3.8.2 Composing Mail

To compose a message in Thunderbird, click on the “Write” icon in the
toolbar. This will open a blank e-mail message. Enter the address of your
correspondent in the “To:” field. Include a subject at your discretion. Fi-
nally, type the text of your message into the message body beneath the sub-
ject field. When you are satisfied with your message, click on the “Send”
icon. You will be automatically prompted to spellcheck the document. After
you have completed the spellcheck, click “Send” one more time to send the
message on its way.

3.8.3 Managing Mail

Mail spools can grow quite large if not managed and may count significantly
against your disk quota. Should you desire to delete a message, highlight the
message and then click on the “Delete” icon in the toolbar. Note that this
does not actually remove messages from your mail spool, it merely marks
the messages as “to be deleted.” To delete messages, either right-click on a
folder and select “Compact this Folder” or select “Compact Folders” from
the file menu. Please note that this completely removes messages from a
mail spool. Unless they were available when backups were made, they are
lost forever.

3.9 Editing Files with Emacs

To edit your programs, you will need to use an editor. An editor is a little
like a word processor, except that it doesn’t know about concepts such as
fonts or styles. It only understands plain text. The better editors have
features which make it easier to write code. The editor we suggest is called
GNU Emacs.

Emacs provides a menu-based interface for editing text. The first-time
user will appreciate the menus of common features. If you are familiar
with popular word processing programs, Emacs should seem fairly easy to
navigate. It is important to remember, though, that Emacs is not a word
processor. A word processor has functions for writing, printing, and saving
text with enhancements such as bold text, special paragraph formatting,
and pictures. Emacs is a text editor. It is suitable for editing code and
other plain-text files.

The largest difficulty is learning that Emacs divides everything into
buffers. If you access the help pages from the help menu while editing

25

a text file, you will need to either kill the buffer with the help pages, or se-
lect the text file buffer (under the Buffers menu) to edit the text file again.
The best way to learn Emacs is to experiment, read the help, and use the
tutorial.

• Special functions are accessed with either the control key or meta key.
Control functions are indicated in the form of C-x, which means hold
down the control key while pressing x. Meta functions are indicated
in the form of M-x, which means hold down the meta key (the ’alt’
key on most PC keyboards) while pressing x. If there is no meta key
on your keyboard, it can be simulated by pressing and releasing the
ESC key, and pressing the other key. M-x command means press
M-x and then enter the command followed by return. If you cannot
remember the entire command name, pressing TAB will complete the
name, and ‘?’ provides a list of possibilities.

• If you make a mistake entering a command, C-g will cancel it. This
only works while entering it, not afterwords.

• If you make an editing mistake, you can select Undo from the Edit
menu or type the equivalent C-x u.

• If you invoke Emacs from the shell on an terminal emulator, the shell
will be in use until you quit Emacs, unless you tell it to run Emacs
in the background. This is done by appending an ampersand on the
command line, i.e. emacs & .

• If you start Emacs in a text-only environment (From a remote shell,
for example) and wish to exit, use the sequence C-x C-c.

• Emacs allows you to create multiple ‘windows’ within its alloted win-
dow to view any of its buffers. C-x 2 creates two windows, likewise,
C-x 1 returns you to one window.

• Emacs also allows you to use multiple frames running the same pro-
gram. To open a file in another frame, choose Open File in Other

Frame from the File menu, or type C-x 5 C-f.

3.10 Printing

All instructional accounts have access to the printers in room 1359. The
print spool that services those printers is called laser. To send a file to the

26

printer, you can use either lpr or print. print only works with text files and
includes a banner across each page indicating the filename, page number,
time, and username. If you send a postscript or graphics file with the print
command, you will use up your paper quota by printing useless gibberish.
Use the lpr command instead.

[bbadger@demo01] (1)$ lpr file

[bbadger@demo01] (1)$ print file

Your print job will be sent to the first available printer. All files sent to the
printer are put in a queue and printed in order of arrival. You can use the
command lpq to display the queues of all the laser printers and determine
to which your job was sent. Also there are 2 print monitors in 1359 which
display the status of the two printers.

You also have the ability to remove a job while it is still in the queue
with the lprm command. The following will remove all of your print jobs.

[bbadger@demo01] (1)$ lprm login

Where login is your login name.
Students are given a 150 page paper quota per class. This amount of

paper should be plenty to cover all printing needs for one class, but if there
is a need for more paper, it can be purchased at the Computer Systems
Lab (room 2350) for a small fee (payable by check or money order only).
Plan ahead if you start to run low on paper, as the CSL is only open during
normal business hours, Monday through Friday.

To see how much paper you have and how much you have used, use the
lpquota command.

Note that it is your responsibility to check that the printer is working
before you send your files. That is, if you send your printout to a printer
which is low in toner or printing streaks, your paper quota will not be
reimbursed. Please send mail to lab@cs.wisc.edu if you notice a printer
with problems.

27

Chapter 4

Getting Help

4.1 Unix Manual Pages (the man command)

By far the most comprehensive source of unix command information is the
online manual. In fact, the entire Unix Programmer’s Manual is stored
online. The program to access the manuals is called man. The argument
passed to it (whatever else you type on the command line after the command
name) is the topic you want information on. For example, if you wanted
man to tell you about itself, you would type:

[bbadger@demo01] (1)$ man man

This will show the manual page on the man program itself. Be aware
that man will only explain something to you if you can ask for it by name.
Unfortunately, there are many occasions when you don’t know what Unix
calls the program you need to run. You may use apropos or man -k to find
out what the system knows about some subject. For example,

[bbadger@demo01] (1)$ apropos compiler (or man -k compiler)

gcc(1) in std-14 - GNU project C and C++ compiler

g77(1) in std-14 - GNU project Fortran 77 compiler

gcj(1) in std-14 - Ahead-of-time compiler for the Java language

javac(1) in std-14 - Java compiler

jikes(1) in std-14 - java source to bytecode compiler

perlcompile(1) in std-14 - Introduction to the Perl Compiler-Translator

xsubpp(1) in std-14 - compiler to convert Perl XS code into C code

compile_et(1) in std-14 - error table compiler

ccmakedep(1) in std-14 - create dependencies in makefiles using a C compiler

gfortran(1) in sys - GNU Fortran 95 compiler

rpcgen(1) in sys - an RPC protocol compiler

28

Section Contents
1 Programs (commands)
2 System Calls
3 Subroutine libraries
4 Hardware
5 Configuration Files
6 Games
7 Miscellaneous
8 System Administration

Table 4.1: Sections of Man Pages

yacc(1) in sys - yet another compiler compiler (DEVELOPMENT)

uil(1) in sys - The user interface language compiler

checkpolicy(8) in sys - SELinux policy compiler

zic(8) in sys - time zone compiler

...

apropos and man -k show you all the various subjects that the online man-
ual knows concerning the topic compilers. The words gcc, javac, etc. are
items that man knows about. The parenthesized number that follows the
command name indicates the section of the manual where the topic can be
found. You need to know this because often the same topic appears in more
than one section of the manual, and you need to be able to specify which
section you are interested in. The various sections and their uses are sum-
marized in table 4.1. Be aware that these commands must search through
a lot of data and may be slow.

Sections can also be divided into subsections. These subsections are
denoted by one letter, and indicate which library the routine can be found
in (c for compatibility, f for Fortran, m for math, etc.) You may notice that
topics may appear in more than one place. To distinguish which page you
want to see, you precede the name with the section. Some examples are:

[bbadger@demo01] (1)$ man 8 zic

[bbadger@demo01] (1)$ man 8v tic

Note that there is an intro page for each section (1, 2, 3, 3f, 3m, etc.) Thus
if you would like to know more about math subroutines, type

[bbadger@demo01] (1)$ man 3m intro

Commands for viewing the man pages are identical to those for less. Press
h for a summary of less commands.

29

4.2 Other Sources of Help

A plethora of information (including this document) is available on the web,
and includes, among other things, information about the Computer Sciences
Department.

You will often find that asking the person sitting next to you is the
quickest way to an answer. However, the students around you need to work
on their projects, too. Depending on what time you are in the lab, you
may find consultants, who circulate around the terminal rooms (look for
the ”consultant on duty” signs they put up, usually on top of the monitor
they’re using or on the desk near them). They are teaching assistants who
hold office hours and can answer UNIX related questions. Also, the CSL
staff offers Unix orientations at the start of each semester.

There are several books on Unix are available at the local bookstores.
The world wide web (especially Google) is also a great place to find answers,
tutorials, references, and forums regarding Unix. The CSL maintains a web
page, complete with documentation, at http://www.cs.wisc.edu/CSDocs .

Course-related questions are best handled by your TA or professor. This
includes things like the locations of data files or specific libraries you need
to link into your programs. The CSL staff are not programming consultants
and should not be used as such.

There are some matters, however, that only the CSL staff can solve.
These primarily pertain to administration and security, such as a nonexistent
account or if you think that someone else knows your password. If you
think there is a problem with the system software (as opposed to your own
program), or a problem with the hardware (such as a hung workstation or
broken keyboard), send mail to lab@cs.wisc.edu with an explanation of
the problem. Be sure to fully describe the problem as best you can or your
problem may not be understood. Mail to lab will be forwarded to the correct
party to deal with your difficulty.

30

Chapter 5

Advanced Topics

This chapter summarizes several of the more powerful UNIX tools and fea-
tures of the instructional machine environment here at the University of
Wisconsin Computer Science Department. Many of the following tools are
simple yet powerful time savers. This is still only an introduction to the
enormous quantity of available features. Do not hesitate to play around and
further explore the UNIX environment.

5.1 TAB Completion

In tcsh, bash, and many other shells, filenames and commands can be com-
pleted or partially completed automatically by pressing the TAB key. This
is commonly known as TAB completion. Pressing TAB after typing in a
shell prompt will complete the filename, directory name, or command name
as far as it can (or completely if it can be uniquely determined from the
currently typed letters).

For instance, if you are in your home directory, type cd pr then press
the TAB key. Since no other files or directories in your home directory
(by default) begin with “pr”, the shell can determine that you mean to
type “private” to refer to your private directory. You can then continue
entering arguments into the command, or you can press Enter to execute
the command.

In addition, TAB completion can be used to partially complete names.
Suppose that there are 3 subdirectories in one of your directories for each of
your programming assignments, named program1, program2, and program3,
and nothing else. While in this directory, you can type cd p and press TAB
and the shell will complete the command as far as “program,” however it

31

does not know which program directory you mean. You will have to finish
the directory name yourself.

Please note that tab completion can be done with most every command.
The cd command was merely used as a common example. If you type em

at a prompt and press tab, “emacs” will be completed since the shell can
determine that no other command begins with em.

However, TAB completion has its limitations. In the first example, if you
typed cd p and pressed TAB, nothing would get added to the command and
the computer would likely beep at you. This is because the file you want to
enter cannot be uniquely determined by the shell. It does not know whether
you want to choose your public or private directory. You need to give the
shell more information before TAB completion will work.

To list all possible completions of a command or file, if you use tcsh (the
default shell), type CTRL-D after partially completing the command. If
you use bash, press TAB twice instead. If you type cd p in your home direc-
tory and pressed CTRL-D (or TAB twice), a line will appear with “public/”
and “private/” indicating the two possible completions. As always, please
consult the manual page of your shell for more information and specifics
about how it handles TAB completion.

5.2 I/O Redirection

Many programs in UNIX will by default read their input from the user’s
keyboard and write their output to the terminal. If you write a C program
that uses printf and scanf, the program will act this way. This is conve-
nient for debugging, but what about when it comes time to actually test
it with your TA’s data? In most systems, you would have to recompile
your program. With UNIX, you can dynamically redirect the normal input
and output streams right on the command line without ever touching the
program’s code. For example:

[bbadger@demo01] (1)$ prog1 < test-data

runs prog1, taking its input from the file test-data. The output will still be
printed on the user’s terminal. On the other hand:

[bbadger@demo01] (1)$ prog1 < test-data > results

still reads the input from the file test-data. Also, the output is sent to the
file results. For a slight variation, the command:

[bbadger@demo01] (1)$ prog1 < test-data >> results

would function the same, except the output is appended to the file results,
instead of replacing whatever was there.

32

5.3 Pipes

Suppose a command produces a large amount of output that you want to
search through using less. You could produce a file from the command
as described above and run less on that file. Or, you could use a pipe.
Pipes allow you to redirect one program’s output directly into another. For
example:

[bbadger@demo01] (1)$ apropos compiler | less

will take the output of apropos and pass it to less. Then, you can use the less
program to search through the output. Note that the pipe uses a vertical
bar (|), not a slash (/).

Be aware that this does not create a file because the data is piped directly
from one program to another. If you would like to create a file from this
data, you will have to use any save features of the program to which you
pipe.

Further be aware that not all programs respond the same way to pipes.
Some programs behave erratically if data is piped directly to them. Consult
man pages for more info.

5.4 Passwords

The passwd command allows you to choose a new password. Refer to sec-
tion 2.3 for more information about passwords. If you forget your password,
you must show up in person to the CSL with your student ID. The CSL will
never tell you your password, you must create a new one.

5.5 Dotfiles

Dotfiles are the generic term for the configuration files for various programs.
These are usually plain text files with a specific format. The most common
form for a dotfile name is .<program name>rc. For example, one of tcsh’s
configuration files is called .cshrc. These files will not show up with the ls
command unless you use the -a or -A options. The man pages for programs
will have more information about their dotfiles and their format.

5.6 File System

It is possible to allow specific users to access specific directories within your
home directory. You have hopefully already noticed the peculiar properties

33

Right What it does

r read allow user to look at files in the directory
l lookup a user with this right may list a directory, look at an ACL or

access subdirectories.
i insert allows user to add files to a directory.
d delete allows files to be removed by user.
w write allows files to be written and modified by user.
k lock allows advisory file locking.
a administrator allows user to change ACL. We do not advise giving other

users the administrator right or removing your own adminis-
trator right.

shorthand notations for common combinations

all rlidwka
write rlidwk
read rl
none removes entry

Table 5.1: AFS permissions

of the directories public and private. Any file or directory you store in
public is readable by anyone and nothing in private is readable by anyone
but yourself. This is achieved through the Access Control Lists (ACLs)
for each directory. Each directory’s ACL defines permissions for all files in
that directory. Subsequent directories created in that directory will initially
have the same permissions as their root directory. You can view the ACL
of a directory with the command fs listacl . For example:

[bbadger@demo01] (1)$ fs listacl public

Access list for public is

Normal rights:

system:administrators rlidwka

system:anyuser rl

bbadger rlidwka

Each of the characters on the right are abbreviations for the permissions
summarized in figure 5.1

To add an entry to an ACL, use the fs setacl command:
[bbadger@demo01] (1)$ fs setacl <directory> <user> <permissions>

For example, if the user “bucky” is your partner on an assignment you are
working on in directory called ’project’, you’d type

34

[bbadger@demo01] (1)$ fs setacl project bucky write

5.7 Communication

finger user@host displays the finger information for user at the machine
host. Most finger servers display the files .plan and .project if they
exist in their home directory. Note that these files must be publicly
readable.

who lists users logged into your machine.

5.8 Miscellaneous Commands

grep string file1 file2 . . . displays all the lines in the files that contain
‘string’

cal month year prints a calendar for the corresponding month and year.

ispell file interactive program that checks spelling in file

script filename records all screen I/O into filename until you type exit .
Note that script will overwrite the file if it exists.

35

Chapter 6

Quick Reference

This chapter is a quick reference to commands listed elsewhere in the doc-
ument.

file commands

cp source destination Copy the file from source to destination.
mv source destination Move the file from source to destination.
cd [path] Change the current directory to path. If path

is not specified, change to home directory.
pwd Print the working directory.
ls List the files in the current directory.
less file show the contents of file

filesystem commands

fs listquota List your current disk usage.
fs listacl List the Access Control List (ACL) of the cur-

rent directory.
fs setacl path user rights Set the Access Control List (ACL) of path for

user to rights. See table 5.1 for the list of
rights. The most important rights are the
aliases read, write and none

help commands

man command Get help for command

apropos topic List command dealing with topic

communication commands

finger user @host displays information about user on the ma-
chine host

who lists users logged in to your machine

36

miscellaneous commands

grep string file1 file2 ... displays all the lines in file1 file2 . . . that
contain string

cal month year display a calendar for the specified month and
year

ispell file check the spelling of a document
script file send all screen I/O to file until exit is typed.

37

